94 research outputs found

    cDNA Sequence of an Apple Ribulose Bisphosphate Carboxylase Small Subunit

    Full text link

    Isolation of a cDNA for Proteinase Inhibitor I

    Full text link

    Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa)

    Get PDF
    Kiwifruit vines rely on bees for pollen transfer between spatially separated male and female individuals and require synchronized flowering to ensure pollination. Volatile terpene compounds, which are important cues for insect pollinator attraction, were studied by dynamic headspace sampling in the major green-fleshed kiwifruit (Actinidia deliciosa) cultivar ‘Hayward’ and its male pollinator ‘Chieftain’. Terpene volatile levels showed a profile dominated by the sesquiterpenes α-farnesene and germacrene D. These two compounds were emitted by all floral tissues and could be observed throughout the day, with lower levels at night. The monoterpene (E)-β-ocimene was also detected in flowers but was emitted predominantly during the day and only from petal tissue. Using a functional genomics approach, two terpene synthase (TPS) genes were isolated from a ‘Hayward’ petal EST library. Bacterial expression and transient in planta data combined with analysis by enantioselective gas chromatography revealed that one TPS produced primarily (E,E)-α-farnesene and small amounts of (E)-β-ocimene, whereas the second TPS produced primarily (+)-germacrene D. Subcellular localization using GFP fusions showed that both enzymes were localized in the cytoplasm, the site for sesquiterpene production. Real-time PCR analysis revealed that both TPS genes were expressed in the same tissues and at the same times as the corresponding floral volatiles. The results indicate that two genes can account for the major floral sesquiterpene volatiles observed in both male and female A. deliciosa flowers

    Asymmetric response of forest and grassy biomes to climate variability across the African Humid Period : influenced by anthropogenic disturbance?

    Get PDF
    A comprehensive understanding of the relationship between land cover, climate change and disturbance dynamics is needed to inform scenarios of vegetation change on the African continent. Although significant advances have been made, large uncertainties exist in projections of future biodiversity and ecosystem change for the world's largest tropical landmass. To better illustrate the effects of climate–disturbance–ecosystem interactions on continental‐scale vegetation change, we apply a novel statistical multivariate envelope approach to subfossil pollen data and climate model outputs (TraCE‐21ka). We target paleoenvironmental records across continental Africa, from the African Humid Period (AHP: ca 14 700–5500 yr BP) – an interval of spatially and temporally variable hydroclimatic conditions – until recent times, to improve our understanding of overarching vegetation trends and to compare changes between forest and grassy biomes (savanna and grassland). Our results suggest that although climate variability was the dominant driver of change, forest and grassy biomes responded asymmetrically: 1) the climatic envelope of grassy biomes expanded, or persisted in increasingly diverse climatic conditions, during the second half of the AHP whilst that of forest did not; 2) forest retreat occurred much more slowly during the mid to late Holocene compared to the early AHP forest expansion; and 3) as forest and grassy biomes diverged during the second half of the AHP, their ecological relationship (envelope overlap) fundamentally changed. Based on these asymmetries and associated changes in human land use, we propose and discuss three hypotheses about the influence of anthropogenic disturbance on continental‐scale vegetation change

    A Survey of Scale Insects (Sternorryncha: Coccoidea) Occurring on Table Grapes in South Africa

    Get PDF
    Increasing international trade and tourism have led to an increase in the introduction of exotic pests that pose a considerable economic threat to the agro-ecosystems of importing countries. Scale insects (Sternorryncha: Coccoidea) may be contaminants of export consignments from the South African deciduous fruit industry to the European Union, Israel, United Kingdom and the United States, for example. Infestations of immature scale insects found on South African fruit destined for export have resulted in increasing rates of rejection of such consignments. To identify the risk posed by scale insect species listed as phytosanitary pests on table grapes to the abovementioned importing countries, a field survey was undertaken in 2004–2005 in vineyards throughout all grape-producing regions in South Africa. Coccoidea species found during the current field survey were Planococcus ficus (Signoret), Pseudococcus longispinus (Targioni Tozzetti), Coccus hesperidum L. and Nipaecoccus viridis (Newstead). With the exception of Pl. ficus, which has only been collected from Vitis vinifera (Vitaceae) and Ficus carica (Moraceae) in South Africa, these species are polyphagous and have a wide host range. None of the scale insect species found to occur in vineyards in South Africa pose a phytosanitary risk to countries where fruit are exported except for Ferrisia malvastra (McDaniel) and N. viridis that have not been recorded in the USA. All scale insects previously found in vineyards in South Africa are listed and their phytosanitary status discussed. The results of the survey show that the risk of exporting scale insect pests of phytosanitary importance on table grapes from South Africa is limited

    Genomic organisation of the Mal d 1 gene cluster on linkage group 16 in apple

    Get PDF
    European populations exhibit progressive sensitisation to food allergens, and apples are one of the foods for which sensitisation is observed most frequently. Apple cultivars vary greatly in their allergenic characteristics, and a better understanding of the genetic basis of low allergenicity may therefore allow allergic individuals to increase their fruit intake. Mal d 1 is considered to be a major apple allergen, and this protein is encoded by the most complex allergen gene family. Not all Mal d 1 members are likely to be involved in allergenicity. Therefore, additional knowledge about the existence and characteristics of the different Mal d 1 genes is required. In the present study, we investigated the genomic organisation of the Mal d 1 gene cluster in linkage group 16 of apple through the sequencing of two bacterial artificial chromosome clones. The results provided new information on the composition of this family with respect to the number and orientation of functional and pseudogenes and their physical distances. The results were compared with the apple and peach genome sequences that have recently been made available. A broad analysis of the whole apple genome revealed the presence of new genes in this family, and a complete list of the observed Mal d 1 genes is supplied. Thus, this study provides an important contribution towards a better understanding of the genetics of the Mal d 1 family and establishes the basis for further research on allelic diversity among cultivars in relation to variation in allergenicity

    Lakeside View: Sociocultural Responses to Changing Water Levels of Lake Turkana, Kenya

    Get PDF

    Metabolic control of embryonic dormancy in apple seed: seven decades of research

    Full text link
    corecore