14,059 research outputs found

    Effects of liquid and vapor cesium on structural materials

    Get PDF
    Literature survey on corrosive effects of liquid and vapor cesium on structural materials, and compatibility of cesium as working fluid for Rankine cycle space power plan

    Fluid thrust control system

    Get PDF
    A pure fluid thrust control system is described for a pump-fed, regeneratively cooled liquid propellant rocket engine. A proportional fluid amplifier and a bistable fluid amplifier control overshoot in the starting of the engine and take it to a predetermined thrust. An ejector type pump is provided in the line between the liquid hydrogen rocket nozzle heat exchanger and the turbine driving the fuel pump to aid in bringing the fluid at this point back into the regular system when it is not bypassed. The thrust control system is intended to function in environments too severe for mechanical controls

    Finite-Size Scaling of Vector and Axial Current Correlators

    Get PDF
    Using quenched chiral perturbation theory, we compute the long-distance behaviour of two-point functions of flavour non-singlet axial and vector currents in a finite volume, for small quark masses, and at a fixed gauge-field topology. We also present the corresponding predictions for the unquenched theory at fixed topology. These results can in principle be used to measure the low-energy constants of the chiral Lagrangian, from lattice simulations in volumes much smaller than one pion Compton wavelength. We show that quenching has a dramatic effect on the vector correlator, which is argued to vanish to all orders, while the axial correlator appears to be a robust observable only moderately sensitive to quenching.Comment: version to appear in NP

    The electron spectra in the synchrotron nebula of the supernova remnant G 29.7-0.3

    Get PDF
    EXOSAT results obtained with the imaging instrument (CMA) and the medium energy proportional counters (ME) are discussed. Assuming that the featureless power-law spectrum obtained in the 2 to 10 keV range is synchrotron radiation from relativistic electrons, one derives constraints on magnetic field strength and age of the nebula. The energy spectra of the electrons responsible for the emission in the radio and X-ray ranges are discussed. The great similarity of the physical properties of G 29.7-0.3 and of three synchrotron nebulae containing a compact object observed to pulse in X-rays makes G 29.7 - 0.3 a very promising candidate for further search for pulsed emission. Further observations at infrared wavelengths might reveal the break(s) in the emitted spectrum expected from the radio and X-ray power-law indices and give us more information on the production of the electron populations responsible for the emission of the nebula

    H_2 Absorption and Fluorescence for Gamma Ray Bursts in Molecular Clouds

    Get PDF
    If a gamma ray burst with strong UV emission occurs in a molecular cloud, there will be observable consequences resulting from excitation of the surrounding H2. The UV pulse from the GRB will pump H2 into vibrationally-excited levels which produce strong absorption at wavelengths < 1650 A. As a result, both the prompt flash and later afterglow will exhibit strong absorption shortward of 1650 A, with specific spectroscopic features. Such a cutoff in the emission from GRB 980329 may already have been observed by Fruchter et al.; if so, GRB 980329 was at redshift 3.0 < z < 4.4 . BVRI photometry of GRB 990510 could also be explained by H2 absorption if GRB 990510 is at redshift 1.6 < z < 2.3. The fluorescence accompanying the UV pumping of the H2 will result in UV emission from the GRB which can extend over days or months, depending on parameters of the ambient medium and beaming of the GRB flash. The 7.5-13.6 eV fluorescent luminosity is \sim 10^{41.7} erg/s for standard estimates of the parameters of the GRB and the ambient medium. Spectroscopy can distinguish this fluorescent emission from other possible sources of transient optical emission, such as a supernova.Comment: 13 pages, including 4 figures. submitted to Ap.J.(Letters

    Regulation of organic anion transport in the liver.

    Get PDF
    In several liver diseases the biliary transport is disturbed, resulting in, for example, jaundice and cholestasis. Many of these symptoms can be attributed to altered regulation of hepatic transporters. Organic anion transport, mediated by the canalicular multispecific organic anion transporter (cmoat), has been extensively studied. The regulation of intracellular vesicular sorting of cmoat by protein kinase C and protein kinase A, and the regulation of cmoat-mediated transport in endotoxemic liver disease, have been examined. The discovery that the multidrug resistance protein (MRP), responsible for multidrug resistance in cancers, transports similar substrates as cmoat led to the cloning of a MRP homologue from rat liver, named mrp2. Mrp2 turned out to be identical to cmoat. At present there is evidence that at least two mrp's are present in hepatocytes, the original mrp (mrp1) on the lateral membrane, and mrp2 (cmoat) on the canalicular membrane. The expression of mrp1 and mrp2 in hepatocytes appears to be cell-cycle-dependent and regulated in a reciprocal fashion. These findings show that biliary transport of organic anions and possibly other canalicular transport is influenced by the entry of hepatocytes into the cell cycle. The cloning of the gene for cmoat opens up new possibilities to study the regulation of hepatic organic anion transport

    Prospects for high-resolution microwave spectroscopy of methanol in a Stark-deflected molecular beam

    Full text link
    Recently, the extremely sensitive torsion-rotation transitions in methanol have been used to set a tight constraint on a possible variation of the proton-to-electron mass ratio over cosmological time scales. In order to improve this constraint, laboratory data of increased accuracy will be required. Here, we explore the possibility for performing high-resolution spectroscopy on methanol in a Stark-deflected molecular beam. We have calculated the Stark shift of the lower rotational levels in the ground torsion-vibrational state of CH3OH and CD3OH molecules, and have used this to simulate trajectories through a typical molecular beam resonance setup. Furthermore, we have determined the efficiency of non-resonant multi-photon ionization of methanol molecules using a femtosecond laser pulse. The described setup is in principle suited to measure microwave transitions in CH3OH at an accuracy below 10^{-8}

    Two-Dimensional Spectroscopy of Extended Molecular Systems: Applications to Energy Transport and Relaxation in an α-Helix

    Get PDF
    A simulation study of the coupled dynamics of amide I and amide II vibrations in an α-helix dissolved in water shows that two-dimensional (2D) infrared spectroscopy may be used to disentangle the energy transport along the helix through each of these modes from the energy relaxation between them. Time scales for both types of processes are obtained. Using polarization-dependent 2D spectroscopy is an important ingredient in the method we propose. The method may also be applied to other two-band systems, both in the infrared (collective vibrations) and the visible (excitons) parts of the spectrum.
    • …
    corecore