1,196 research outputs found
The role of artificial intelligence techniques in scheduling systems
Artificial Intelligence (AI) techniques provide good solutions for many of the problems which are characteristic of scheduling applications. However, scheduling is a large, complex heterogeneous problem. Different applications will require different solutions. Any individual application will require the use of a variety of techniques, including both AI and conventional software methods. The operational context of the scheduling system will also play a large role in design considerations. The key is to identify those places where a specific AI technique is in fact the preferable solution, and to integrate that technique into the overall architecture
Managing temporal relations
Various temporal constraints on the execution of activities are described, and their representation in the scheduling system MAESTRO is discussed. Initial examples are presented using a sample activity described. Those examples are expanded to include a second activity, and the types of temporal constraints that can obtain between two activities are explored. Soft constraints, or preferences, in activity placement are discussed. Multiple performances of activities are considered, with respect to both hard and soft constraints. The primary methods used in MAESTRO to handle temporal constraints are described as are certain aspects of contingency handling with respect to temporal constraints. A discussion of the overall approach, with indications of future directions for this research, concludes the study
Scheduling spacecraft operations
A prototype scheduling system named MAESTRO currently under development is being used to explore possible approaches to the spacecraft operations scheduling problem. Results indicate that the appropriate combination of heuristic and other techniques can provide an acceptable solution to the scheduling problem over a wide range of operational scenarios and management approaches. These can include centralized or distributed instrument or systems control, batch or incremental scheduling, scheduling loose resource envelopes or exact profiles, and scheduling with varying degrees of user intervention. Techniques used within MAESTRO to provide this flexibility and power include constraint propagation mechanisms, multiple asynchronous processes, prioritized transaction-based command management, resource opportunity calculation, user-alterable selection and placement mechanisms, and maintenance of multiple schedules and resource profiles. These techniques and scheduling complexities requiring them are discussed
Cloud optical thickness and liquid water path – does the <i>k</i> coefficient vary with droplet concentration?
Cloud radiative transfer calculations in general circulation models involve a link between cloud microphysical and optical properties. Indeed, the liquid water content expresses as a function of the mean volume droplet radius, while the light extinction is a function of their mean surface radius. There is a small difference between these two parameters because of the droplet spectrum width. This issue has been addressed by introducing an empirical multiplying correction factor to the droplet concentration. Analysis of in situ sampled data, however, revealed that the correction factor decreases when the concentration increases, hence partially mitigating the aerosol indirect effect. <br><br> Five field experiments are reanalyzed here, in which standard and upgraded versions of the droplet spectrometer were used to document shallow cumulus and stratocumulus topped boundary layers. They suggest that the standard probe noticeably underestimates the correction factor compared to the upgraded versions. The analysis is further refined to demonstrate that the value of the correction factor derived by averaging values calculated locally along the flight path overestimates the value derived from liquid water path and optical thickness of a cloudy column, and that there is no detectable relationship between the correction factor and the droplet concentration. It is also shown that the droplet concentration dilution by entrainment-mixing after CCN activation is significantly stronger in shallow cumuli than in stratocumulus layers. These various effects are finally combined to produce the today best estimate of the correction factor to use in general circulation models
The extent of continental material in oceans: C-Blocks and the Laxmi Basin example
We propose a tectonic interpretation for the outer-SDRs (SDRs: Seaward-Dipping Reflectors) and Pannikar central ridge in the aborted Laxmi Basin west of India from wide-angle seismic reflection data. The outer-SDRs comprise syn-tectonic extrusives (lavas and/or volcaniclastics) emplaced above passively exhumed mid-to-lower mafic crust of continental origin. They erupted following sudden lithosphere weakening associated with isolation of a continental block (a ‘C-Block’). Continuous magmatic addition during crustal extension allowed stretching of the lower crust whilst maintaining constant or even increasing thickness. A similar process occurred at both conjugate margins allowing bulk, pure-shear plate separation and formation of linear magnetic anomalies. The Laxmi example can explain enigmatic features observed in mature oceans such as presence of distal buoyant plateaus of thick continental crust away from the margins
Diapause in the pea aphid (Acyrthosiphon pisum) is a slowing but not a cessation of development
BACKGROUND: Many insects undergo a period of arrested development, called diapause, to avoid seasonally recurring adverse conditions. Whilst the phenology and endocrinology of insect diapause have been well studied, there has been comparatively little research into the developmental details of diapause. We investigated developmental aspects of diapause in sexually-produced embryos of the pea aphid, Acyrthosiphon pisum. RESULTS: We found that early stages of embryogenesis progressed at a temperature-independent rate, characteristic of diapause, whereas later stages of embryogenesis progressed at a temperature-dependent rate. However, embryos maintained at very high temperatures during the temperature-independent stage showed severe developmental abnormalities. Under no temperature regime did embryos display a distinct resting stage. Rather, morphological development progressed slowly but continuously throughout embryogenesis. CONCLUSION: Diapause in the pea aphid, and perhaps in many other insects, is a temperature-independent slowing but not a cessation of morphological development. This suggests that the mechanisms limiting developmental rate during diapause may be the same as those controlling developmental rate at other stages of growth
High efficiency GaAs-Ge tandem solar cells grown by MOCVD
High conversion efficiency and low weight are obviously desirable for solar cells intended for space applications. One promising structure is GaAs on Ge. The advantages of using Ge wafers as substrates include the following: they offer high efficiency by forming a two-junction tandem cell; low weight combined with superior strength allows usage of thin (3 mil) wafers; and they are a good substrate for GaAs, being lattice matched, thermal expansion matched, and available as large-area wafers
Accuracy of generalized gradient approximation functionals for density functional perturbation theory calculations
We assess the validity of various exchange-correlation functionals for
computing the structural, vibrational, dielectric, and thermodynamical
properties of materials in the framework of density-functional perturbation
theory (DFPT). We consider five generalized-gradient approximation (GGA)
functionals (PBE, PBEsol, WC, AM05, and HTBS) as well as the local density
approximation (LDA) functional. We investigate a wide variety of materials
including a semiconductor (silicon), a metal (copper), and various insulators
(SiO -quartz and stishovite, ZrSiO zircon, and MgO periclase).
For the structural properties, we find that PBEsol and WC are the closest to
the experiments and AM05 performs only slightly worse. All three functionals
actually improve over LDA and PBE in contrast with HTBS, which is shown to fail
dramatically for -quartz. For the vibrational and thermodynamical
properties, LDA performs surprisingly very good. In the majority of the test
cases, it outperforms PBE significantly and also the WC, PBEsol and AM05
functionals though by a smaller margin (and to the detriment of structural
parameters). On the other hand, HTBS performs also poorly for vibrational
quantities. For the dielectric properties, none of the functionals can be put
forward. They all (i) fail to reproduce the electronic dielectric constant due
to the well-known band gap problem and (ii) tend to overestimate the oscillator
strengths (and hence the static dielectric constant)
Smoothed particle hydrodynamics simulation of high velocity impact dynamics of molten sand particles
Sand ingestion is highly detrimental for gas turbines because it leads to erosion and corrosion of engine components, accelerating material fatigue and contributing to global engine failure. In this paper the high velocity impact of a molten sand particle onto a solid wall is investigated by means of the Smoothed Particles Hydrodynamics method where the three phases are taken into account. Nominal conditions are a 25 μm particle composed of molten sand (dynamic viscosity μl=11 Pa·s) impacting the wall at a velocity of 250 m/s. The influence of different parameters are explored such as the mechanical properties of the molten sand particle (density, viscosity, surface tension), the impact conditions (velocity magnitude, particle size and angle of impact) as well as the particle shape (sphere or cube with different geometrical features impacting the wall). It is found that the particles do not form a lamella during the impact but mostly conserve its initial shape. It is also confirmed that sharp features such as edges lead to a larger normal pressure at the impact location. Correlations to quantify (i) the spread factor, (ii) the maximum and mean impact force and impact pressure and (iii) the slip distance are derived for the first time based on the investigated parameters. The importance of these correlations is that they provide information needed to implement low-order models for studying impact and deposition of molten sand in engineering simulations
Iron Uptake Analysis in a Set of Clinical Isolates of Pseudomonas putida
Pseudomonas putida strains are frequent inhabitants of soil and aquatic niches and they are occasionally isolated from hospital environments. As the available iron sources in human tissues, edaphic, and aquatic niches are different, we have analyzed iron-uptake related genes in different P. putida strains that were isolated from all these environments. We found that these isolates can be grouped into different clades according to the genetics of siderophore biosynthesis and recycling. The pyoverdine locus of the six P. putida clinical isolates that have so far been completely sequenced, are not closely related; three strains (P. putida HB13667, HB3267, and NBRC14164T) are grouped in Clade I and the other three in Clade II, suggesting possible different origins and evolution. In one clinical strain, P. putida HB4184, the production of siderophores is induced under high osmolarity conditions. The pyoverdine locus in this strain is closely related to that of strain P. putida HB001 which was isolated from sandy shore soil of the Yellow Sea in Korean marine sand, suggesting their possible origin, and evolution. The acquisition of two unique TonB-dependent transporters for xenosiderophore acquisition, similar to those existing in the opportunistic pathogen P. aeruginosa PAO, is an interesting adaptation trait of the clinical strain P. putida H8234 that may confer adaptive advantages under low iron availability conditions.Work in our laboratories was supported by ERANET Pathogenomics program through the ADHERS project (Ref: BIO2008-04419-E) and Fondos FEDER from the European Union through project BIO2010-17227 of the Spanish Ministry of Economy and Competitivity. The work in Abengoa Research was funded by H2020 grant Empowerputida number 65703.Peer reviewedPeer Reviewe
- …