
N90-22297
THE ROLE OF ARTIFICIAL INTELLIGENCE

TECHNIQUES IN SCHEDULING SYSTEMS

Amy L. Geoffroy, Daniel L. Britt & John R. Gohring
Martin Marietta Information Systems Group

Denver, CO.

ABSTRACT

Artificial Intelligence techniques
provide good solutions for many of the
problems characteristic of scheduling
applications. However, scheduling is
a large, complex heterogeneous
problem. Different applications will
require different solutions. Any
individual application will require the
use of a variety of techniques,
including both AI and conventional
software methods. The operational
context of the scheduling system will
also play a large role in design
considerations. The key is to identify
those places where a specific AI
technique is in fact the preferable
solution, and to integrate that
technique into the overall architecture.

Introduction

As Artificial Intelligence (AI)
techniques have moved from the
laboratory into complex applications,
two things have become apparent.
First, frequently more than one AI
technique is required to satisfy the
multitude of requirements in a large,
complex operational domain.
Second, AI techniques alone are
either insufficient or not the most

efficient means of performing these
complex tasks they must be
integrated with standard software
(and sometimes hardware).
Scheduling in resource constrained
domains is one example of this type of
problem.

Resource constrained scheduling] is
a heterogeneous problem in two
ways. First, there can be tremendous
differences between the
characteristics of various

applications' scheduling problems,
even within space applications (e.g.
ground processing vs. on-board
experiment scheduling). Because of
these differences in requirements,
successful scheduling solutions for
these applications will generally be
somewhat different for each
application. Second, there are
multiple requirements within a single
application. In experiment
scheduling, for instance, there are
requirements to limit search through
the space of all possible schedules,
and also to represent and manipulate
quite complex resources. These are
distinct subproblems, and techniques
used to limit search and those used to

handle complex resources will be
different. Any given scheduling
application may have a large number
of distinct subproblems.

Scheduling within an operational
context consists of both a core
scheduling problem, and the problem
of the scheduler's place in the
operations context. The core problem

1Scheduling problems which are not
resource limited are very different in
character from resource constrained
scheduling and are not discussed here. The
scheduling of space-based activities is
resource limited, as are most ground-based
operations. For the remainder of the paper
the term scheduling is used to refer only to
resource constrained scheduling.

29

https://ntrs.nasa.gov/search.jsp?R=19900012981 2020-03-19T23:14:48+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42823786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

will be determined by certain formal
characteristics of the scheduling
domain. These include considerations

such as the computational complexity
of the domain (as determined by the
number of items to be scheduled, the
structure of the items to be scheduled,
the granularity of the schedule, etc.),
and the predictability of the domain.
The operational context drives a host
of additional requirements, such as
distribution of control over scheduling,
human-machine interfaces, and the
role of the scheduler in contingency
handling.

Satisfying scheduling requirements
within an operational context calls for
careful examination of the specific
application, and identification of the
place of AI and standard techniques
within an overall system architecture
that address the particular
characteristics of the application.

The first section of this paper
introduces the resource constrained
scheduling problem. The second
section provides a general discussion
of how AI techniques are well suited
to solving many scheduling
subproblems. The third section
shows how the particular
characteristics of specific scheduling
problems will determine the
appropriateness of different solution
methods, with particular attention paid
to AI methods. Included in this section

are examples of how different
applications may differ in their
requirements, how a single
application may consist of many
subproblems, and how AI, Operations
Research (OR), and other
conventional software techniques
may be profitably combined to provide
solutions to an application's
scheduling problem. The fourth

section discusses ways in which the
operational context within which the
scheduler will reside drives many
design considerations. In the
concluding section we summarize the
discussion and consider how design
for AI systems fit into the overall
design of large, complex systems.

Scheduling in Resource
Constrained Environments

Resource constrained scheduling is
the fixing of activities on a timeline
such that those activities may be
performed at the time specified by the
schedule. This entails the

coordination of requisite resources,
the availabilities of required ambient
conditions, and the interleaving of
activities which compete for
resources.

Certain prerequisites must be met in
order for scheduling to be feasible.
Both resource availabilities and the

activities' requirements must be
roughly predictable. All relevant
characteristics of activities and

resources must be expressible. To
the extent that these requirements are
met, predictive scheduling -
scheduling for a future time period -
can be successfully performed.

For this paper, we will define three
levels of description for activities:
objectives, activities, and subtasks.
An objective is the goal or purpose of
the task, e.g. to produce a crystal. An
activity is one well-specified way of
fulfilling an objective, e.g. one run of
the crystal growth experiment. A
subtask is a step that is a part of the
performance of an activity, e.g. the
set-up phase in the crystal growth
experiment.

3o

Resource

requirements:

TARGETING
EXPERIMENT Conditions:

Side effects:

Pointing Calibration Data Collect Shut Down
Power 50 150 190 50
Heat

Rej 50 150 190 50

Target must be available for data collection phase
Vibration must be < x for calibration and data
collection

Atmospheric pollution must be < y
Creates vibration when rotating in pointing phase

Time windows: Mon. - Fri. 11am - 6 pm (when ground support
is available)

SPIDER
EXPERIMENT

Resource

requirements:

Conditions:

Coordination:

Continuous power & heat rejection, 25w each
1 Crewmember (PO or PS) for observation phases

Observation phases vibration < z
Observations must occur at least 10 minutes after

"sunrise", during "daylight" only

Observation phase of this experiment should co-occur
with the filming phase of the Public Relations filming

CRYSTAL SAMPLE
GROWTH

EXPERIMENT

Set-up Heat Grow Centrifuge Analysis
Resource Crew 1 0 0 1 1

requirements: Power 0 500 250 110 25
Heat Rej 0 200 500 110 25

Conditions: Sample growth < p vibration
Sample analysis < q vibration

Gasses and liquids: 201Helium 51Argon

Side effects: Centrifuging induces Xvibration

21H0

Set-up Film Break-down
PUBLIC Resource Crew 1 1 1

RELATIONS requirements: Video Cam 1 1 1
FILMING Power 0 125 0

1 roll film

Conditions: No venting during filming
Filming <x vibration

Coordination: Filming phase must co-occur with spider obs

Figure 1. A simplified example of activities which might require scheduling for
Space Lab, described in terms of their requirements.

31

An example will be used to illustrate
some characteristic problems
commonly found in scheduling
applications. This is not intended to
represent a "generic" scheduling
problem. As we shall argue later,
applications vary enormously in the
ways their scheduling problems may
be characterized, and these

differences preclude the possibility of
a single representative scheduling
problem. Rather, the example serves
to illustrate one typical version of a
scheduling problem.

Fig.1 shows a simplified example of a
hypothetical scheduling problem.
Suppose that three experiments - one
using a targeting instrument,
another involving a crew member's
observation of the activity of some
spiders, and another involving the
generation and centrifuging of some
samples - and a public relations
filming activity, all require scheduling

for Space Lab.

For each of these activities certain

resource requirements must be met:
power (for the targeting and sample
experiments), crew time (for the spider
and sample experiments), etc. Insofar
as these resources are limited,

different activities may compete for
these resources, requiring
coordination of the activities.
Conditions for each of the

experiments also must obtain - the
targeting instrument must be able to
acquire its target, and may require a
minimum vibration, while the

centrifuge phase of the sample
experiment may generate a certain
amount of vibration. Additionally,
there may be a requirement to film a
crew member performing the
observations in the spider experiment

for a publicity film, and this will require

coordination of the filming's timing,
resource and conditions requirements
with those of the spider experiment.
Because time and resources in space
are rare and costly it is of the utmost
importance to generate as efficient a

schedule as possible. The process of
producing an efficient schedule which
provides the necessary coordination
of resources and conditions for these

activities can be quite complex.

There are several sources of difficulty
in this scheduling problem which are
found in many different scheduling
applications. The scheduling objects,
i.e. the activities and resources, can
be quite complicated. The relations
between these objects can also be
complicated. Ensuring that these
objects and their relationships are all
appropriately represented, and that
there are means of reasoning about
them which will allow even the

verification of schedule validity is no
trivial task. However, the most critical
challenge is controlling the
combinatorics of the problem -
producing a good schedule given all
the possible schedules that might be
generated.

Combinatorics. It has been

demonstrated that procedures which
guarantee an optimum solution to
scheduling problems are either NP-
complete or NP-hard (Ibaraki & Katoh,

1988), depending on the
characteristics of the particular
problem. Realistic scheduling
problems are most frequently NP-
hard. What this means is that the

computation time for finding an
optimal solution to a scheduling
problem increases exponentially or
worse as a function of the number of

subtasks and resource disjunctions
(choices between unique resources in

a resource pool which satisfy the

32

resource requirement)
consideration.

under

In the example given in Fig. 1 above,
each of the phases of each
experiment counts as one subtask
(e.g. the targeting experiment consists
of four subtasks - pointing,
calibration, data collection, and shut
down) yielding 14 subtasks. One
three-valued resource disjunction is
represented in the choice between
crewmember types. For any given
subtask requiring crew time, you may
use any one of three types of
crewmembers - Payload Operators
(PO's), Payload Specialists (PS's), or
Mission Specialists (MS's), unless
some restriction is specified.
Multiplying out each subtask by the
resource disjunctions found in each
subtask, we find that n=27. This,
however, represents only a small
subset of a realistic scheduling
problem for the Space Lab
application. In a real application,
there are many more experiments
under consideration, each experiment
consists of more subtasks, there are
more resources and there are more

disjunctions of those resources.

Parunak (1987) states, "... consider a
problem that in the worst case

requires 2n microseconds to solve,
where n is the size of the problem
[a] problem of size 10 will require no
more than .001 seconds to solve.., of
size 40... as long as 12.7 days ... of
size 60, 366 centuriesJ ... Even with a
thousand fold increase in speed, the
size of problem that we could
guarantee to complete in 366
centuries increases only to 70."

These increases in computation time
are a direct reflection of the increasing
size of the space of possible
schedules - all possible combinations

of placements of subtasks on the
schedule. Most realistic, complex
scheduling problems are not
amenable to optimization techniques
simply because of the combinatorics
involved. Thus, methods must be
derived to arrive at solutions without

searching the entire space of all
possible schedules. 2

The Suitability of AI Techniques
for Scheduling Problems

There are a number of characteristics

of scheduling problems that make
them amenable to AI solutions, some
having to do with the combinatorics
problem, others having to do with
other aspects of scheduling -
requirements for rich representation
techniques, exploitation of constraints,
planning problems, and the utility of
expert knowledge.

Combinatorics. One of the main goals
in the development of AI as a field has
been to devise methods which

2 An alternative approach to this problem
has been developed in Operations
Research (OR). There has been a great deal
of work in OR on algorithmic methods which
yield good, but not optimal solutions to
scheduling problems, but these are also
limited, either by size of the problem that can
can reasonably be attacked by these
methods, or by the limiting assumptions that
must be made for the methods to be
effective (Graham, 1978). Also, these
techniques require an "objective function" -
a formula which supports precise
measurement of schedule value which the
algorithm tries to minimize or maximize. In
many real scheduling applications, there is
no objective function. Human schedulers
cannot formulate a precise mathematical
combination of their many often conflicting
goals (e.g. resource efficiency, relative
priorities for activities, fairness) that
represents the value of a schedule.
However, these methods may prove quite
valuable if used on small subproblems for
local decision making.

33

circumvent the problems of
combinatorics by intelligently guiding
search through enormous spaces,
and these methods are applicable to
scheduling problems. (In fact , a
number of these methods have been

adopted by OR practitioners and
others, and are now considered
standard computer science
techniques).

Representations. Many of the objects
in these domains may be considered
semantically rich, hierarchically or
heterarchically structured, with many
different types of characteristics
(consider the description of the Space

Lab experiments given above). The
representation techniques developed
for AI, particularly object-oriented
programming, are ideally suited for
this domain.

Constraints. There are many
constraints that must be respected, or
which can be exploited in developing
a schedule, and constraint
propagation and relaxation
techniques have been well developed
in the field.

Planning. Some aspects of the
scheduling problem turn out to be
problems in planning - in some cases
an objective may be specified, but the
actual activity to support that objective
may be underspecified. The unique
specification of the activities which will
achieve the objective is a planning
problem, another area in the AI field.

Expertise. Much of the know-how in
scheduling is the purview of human
experts, and may be amenable to
expert system techniques.

There are other characteristics of

scheduling which make it a good

candidate for AI techniques, but these
examples suffice to show that AI is a

good path to explore in creating
solutions.

Matching Techniques to
Scheduling Problem
Characteristics

The discussion above provides a
general picture of how AI might be
applied to scheduling problems, but
little specific about how to actually
apply these techniques. This is
because scheduling is a
heterogeneous problem. The exact
form of a solution to any given
scheduling problem depends on the
characteristics of the particular
problem. A sample of relevant
characteristics are:

I) Activities
A) Total number
B) Complexity

i) number of subtasks
ii) number of resources/subtask
iii) dependencies between

resource requirements
C) Similarity of activities
D) Fixedness

i) Timing

ii) Number of different ways of
achieving the same objective

E) Fragmentability
F) Co-dependencies between

activities or subtasks

II) Resources
A) Number
B) Disjunctions
C) Complexity
D) Similarity of resources
E) Co-dependencies between

resources

III) Time
A) Granularity
B) Schedule duration relative to

activities' and subtasks' durations

34

IV) Schedule
A) Repetitiveness
B) Resource costs
C) Activities' values
D) Goals

i) explicitness
ii) number
iii) types
iv) variety

V) Methods used in current operations
A) Adequacies/Inadequacies
B) Experts

i) existence
ii) quality of performance

This list is not intended to be an

exhaustive catalog of all relevant
factors, but it represents many
important ones. For instance, the
number of subtasks (IBi) and the
number of resource disjunctions (liB)
will determine the size of the
combinatorics problem. The
complexity of activities (IB) and
resources (IIC) will determine the
complexity of the representations
used. Number of ways of achieving
the same goal (IDii) indicates the
extent to which a planning problem
exists.

The values of these characteristics
can vary considerably between
different scheduling applications. The
specific characteristics of a given
scheduling application will determine
what combination of techniques, both
conventional software and AI

methods, are most appropriate.
There are three major points to be
made here. First, different
applications will demand different
solutions. Second, because real
scheduling applications are really a
combination of a number of thorny
problems, a single application wJlJ
probably require more than one
methodology. Third, these
methodologies may often be a

combination of AI and conventional
software methods.

Differences between diverse
applications' characteristics will
demand different solutions. A few
examples serve to show how the
different characteristics of a problem
can help to determine appropriate
solution methods. For instance, in
domains where there are many co-
dependencies between activities,
between subtasks or between

resources, constraint propagation
techniques will be extremely
important. Search methods that
evaluate current state as a function of
schedule "goodness" so far and/or
projected distance to goal (e.g. best-
first search, genetic algorithms) work
well in domains where a) scheduling
goals are explicit, b) their values may
be defined quantitatively, c) a function
defining the combination of these
values may be defined to reflect an
overall schedule value, and d) these
values are easy to measure on an
existing schedule, but not otherwise.
Where human experts perform the
scheduling function quite well, an
expert systems approach would
generally work well, but not in
domains where human scheduling is
considered inadequate.

An interesting comparison of
matching techniques and domain
characteristics is shown in contrasting
scheduling for some Deep Space
Network (DSN) problems and
scheduling the Laboratory
experiments onboard Space Station.
The DSN problem can be
characterized as having an extremely
large number of activities, each fairly
simple - consisting of one or few
component subtasks, and requiring a
small number of resources. Also, the
activities to be scheduled are very
similar to one another, using basically

35

the same resources in basically the
same ways. In contrast, there are
fewer activities to be scheduled for the

Space Station Laboratory, but each of
the activities is more complex. Each

activity consists of a larger number of
subtasks, each requires a large
number of resources, and the
activities are much less similar to
each other.

A scheduling strategy adopted for the
DSN problem might be to create an
initial schedule paying little attention
to resource limitations, and in which
resources are overbooked, then to
shuffle activities on the schedule to try
and ameliorate the overbooking. The
primary strategies in use here are
backtracking and evaluation of entire
candidate schedules. In contrast, for

the Space Station Laboratory
problem, a scheduling system might
use constraint propagation
techniques and a number of
intelligent heuristics to create an
initial schedule which is conflict-free.
These methods would concentrate on

finding places on the schedule where
each activity fits without resource or
other constraint violations. The
methods used here would be

constraint propagation and local
optimization. These two different
approaches each work well for their
intended applications.

Consider trading the approaches
between the applications. To fully
appreciate the implications of this
trade, it helps to consider the
characteristics of the different

domains more abstractly. Imagine
activities to be n-dimensional shapes
that must be packed as tightly as
possible. One dimension represents
time, and each of the other
dimensions represents a resource
required for the activity. The space
into which the activities must be

packed will have the same number of
dimensions as the total number of

unique resources used by all the
activities, plus one dimension for time.

Figure 2 shows a representative
simple case of a four-dimensional
task.

Crew 0

1500

Power 0
2O0

Comrnun

0

Figure 2.

resources,

, JIIIIIIIIIIIIII

R
240

Time

A task requiring three
crew time, power, and

communications time, against time.
This translates into a four-dimensional

shape for the task.

Because the DSN activities are fairly
simple and similar, the shapes for
each of the tasks will be much alike.
Because there are few resources
under consideration, the n-

dimensional space into which they
will be packed has a small number of
dimensions. In contrast, the

Laboratory tasks are much more
complex and less similar, so the task
shapes will be very different from

each other. The n-dimensional space
into which they must be fit has a large
n (over 200 resources are used in
scheduling for one version of this
problem).

The approach of initial random
placement followed by shuffling to
ameliorate overbooking is good for
cases where the shapes are basically
similar, because the shapes
representing each task are pretty
much interchangeable. Random
placement and shuffling are dreadful
strategies, however, when the shapes
of activities are very different, and
there are a large number of

36

dimensions to be matched. This is
because (except in a resource-rich
environment) random placement is
unlikely to yield viable placements for
complex activities. Further, randomly
substituting an activity which is
currently an unsuccessful fit for one
that is a successful fit only works
insofar as the successful item is
blocking the resources needed for the
other item. The more dimensions
under consideration, and the more
different the two activities are on those
dimensions, the greater the
probability of failure.

The approach which focuses on
goodness of fit for activities at each
step in schedule generation is good
for scheduling dissimilarly shaped
activities in a large number of
dimensions because it focuses on
finding such fits. However, it is
computational overkill to use this
approach for shapes which are highly
similar and are to be fit in a small
number of dimensions. Most of the
decision making strategies used in
creating an initial schedule would be
irrelevant in the DSN application.
Also, since this approach does not
support random modifications (a good
idea for DSN-type tasks), it fails to
take advantage of some simple
strategies that, for the DSN domain
are effective at reaching better quality
schedules quickly.

Different methods will be used for any
single application. Any given
scheduling application may consist of
a combination of hard problems.
Some of these problems may interact,
so that solutions must be co-

designed, while others may be
independent, and the design for
solving the different problems may be

performed independently.

The example used in Fig. 1 illustrates
a few of these types of problems.
There are several different kinds of

constraints that must be respected in
order for these experiments to be
successfully scheduled. Two of the

major constraints are resource
requirements (e.g. power and crew
requirements) and temporal co-
dependencies (e.g. do the public
relations filming while an astronaut is

observing the spider experiment).
These two constraint types require
different aspects in representation,
and different computational methods
to ensure that these constraints are
met. However, both constraints are

used to compute answers for a single
problem - where an activity may be
placed that meets all of its constraints.
Because of this, their design must be
tightly linked.

In contrast, there are other difficult

aspects of this scheduling problem
that are fairly independent of the
computations for temporal and
resource constraints. The

management of several of the
resources in this scenario is complex.
Crew, for instance, has certain
restrictions not only on total amount of
time worked in a shift, but on the
combination of experiment types that

may be successively scheduled,
preferences for different activities,
relative experience with and
qualifications for different activities,
etc. Data transmission is a complex
combination of real-time transmission

and storage with subsequent
transmission, where transmission

times may be determined by what
items appear on the final schedule.
These resources require complex
management systems themselves,
which may take on a variety of forms
(e.g. expert systems, OR methods,
etc.) depending on the details of the

37

management problem. The design of
each resource manager, however, is
nearly independent of the constraint
propagation methods for temporal
and resource constraints - the only

requirement is that the manager
provide the type of information about
the resource required for scheduling.

The best solutions may combine A I
and more conventional software

techniques. Because any scheduling
application consists of a variety of

problems, it will generally be the case
that some of the solutions will consist
of conventional software methods,

and some will use AI techniques.

Many of the examples given above
have illustrated the utility of AI
solutions to problems in various
applications. The most obvious
example of an area for conventional
software are parts of the scheduling
process which are straightforward and
algorithmic. Most applications, for
instance, require a good deal of
bookkeeping - tracking what
resources and conditions are

available where on the scheduling
timeline, and updating those
availabilities as the scheduling
process proceeds. This is best suited
to conventional computing

procedures.

There are also interesting possibilities
for combining conventional and AI

techniques to attack the same
problem. Several recent systems
(e.g. Berner, Durham & Reilly, 1989)
have combined AI and OR

techniques. It is possible, for
instance, to use a heuristic method to

decompose the scheduling problem

into subproblems which are more
tractable, and then use OR or

optimization techniques to solve the
subproblem (Britt, Geoffroy & Gohring,
1990). It also might be promising to

extend the multi-perspective
scheduling strategies used in OPIS
(Smith, Fox and Ow, 1986) to a multi-
technique strategy, where based on
the current state of the problem (e.g.
whether resource bottlenecks appear,
how large the current search space is,
etc.) different scheduling techniques
might be selected, and these
techniques might be a variety of AI
and OR techniques.

The Operational Context

The scheduling problems described
above are realistic, and solutions to

those problems can be embedded
into real operations. The scheduling
problem as discussed so far may be
considered the core scheduling

problem. Planning and scheduling in
the operational context, however,
entails much more than just the core
scheduling problem, and the larger
operational context complicates the
requirements for a scheduling system.
Some of these additional

requirements may be addressed by
systems which are entirely separate
from the scheduling system. So for
instance, some kind of support to help
users formulate activity definitions will
be required. A separate activity editor
can be implemented to fulfill this
requirement. Such an editor would
be a good candidate for intelligent
human-machine interface techniques.

The design of the core scheduler will
remain untouched by the
requirements for the activity editor.
However, there are other

requirements levied by the
operational context that must be
refelcted in the design of the core
scheduler itself.

Three major complicating factors will
be discussed here. First, the

scheduler performs a function which
must be integrated with the other

38

functions of the larger planning and
scheduling system. Second, in the
operational world, nothing ever really
goes exactly as planned - there are
always contingencies popping up
which invalidate a schedule and
require some reaction to get the
schedule back on track. Third, the
planning and scheduling process
changes in character over time, from
long-range planning to the scheduling
of today's activities.

Scheduler integration. In many
operational contexts, a scheduling
system will reside as one node in a
complex network of hardware and

software systems and human users. 3
The scheduler will be involved in

numerous information exchanges,

e.g. receiving data about resource
availabilities, or transmitting data
about activities' timings. Ensuring that

the design of the scheduler can
support such exchanges may be time
consuming, but will have little impact
on the technical approach to the core
scheduling problem.

However, other aspects of interactions
with the other nodes in this network

may drive some design decisions
related to the core scheduling system.
Two main issues here are control of

the scheduling process, and the

degree to which the actions of the
scheduling system can be
understood.

It is unlikely that a scheduling system
for a complex scenario will always be
run entirely autonomously. Even if it
is feasible, full autonomy is probably

not desirable. Human operations
managers will want to have the final
authority on decisions regarding the
schedule, even if this authority is only

rarely exercised. Operators must be
able to control and interact with the

scheduler. This places demands not
only on the design of the user
interface, but on the control structures
of the scheduling system, particularly
if the goal is a user-determined level
of autonomy. It also requires that the

system operate in such a way that
people can understand what the

system is doing. 4

Control of the scheduler may not be
limited to interactions with a single

user or single user type. The
scheduling of unmanned platforms
such as the Earth Observation System

(EOS) for instance, involves a network
of science users, platform managers,
instrument managers, and
communications (TDRSS) managers,
and all are involved in the scheduling

process. Each has a different realm of
authority, and each can control the
scheduler in different ways. The
scientists interact with the scheduler

in terms of their experiments, while
the scheduling concerns of the

platform manager are to provide
platform resources, such as power, to
support the schedule, and to schedule
activities which maintain the health

and safety of the platform. These
users interact with the scheduler

asynchronously, which has
implications for both the control
structure and the scheduling

strategies of the system. Because
users interact with the scheduler

3 There are a number of functions (other
nodes) in this larger planning and
scheduling context which are good
candidates for AI applications, but space
limitations preclude pursuing this further
here.

4 This does not necessarily require that the
system reason like an expert - people can
understand, for instance, that a thermo-
dynamic model is used, even though they
don't create schedules manually using that
method.

39

asynchronously across long periods
of time, the information on which
scheduling is based is always in a
state of flux. The scheduling strategies
of the system in this scenario have to
reflect the tentative state of the
scheduling information available at
any given point in time.

Contingencies. Schedules are based
on assumptions made about activities'
requirements, the resources that will
be available for the scheduling
period, conditions which will be true,
etc. After a schedule has been

generated, some of these
assumptions will turn out to be false.
There may be a power failure, some

equipment might break, an activity
might take longer than projected, or
some new, previously unscheduled
activity may need to be forced on the
schedule. In most of these cases, the
schedule will be invalidated.

The design of the scheduling system
should support the ability to
reformulate the schedule based on

the new information. In general, it is
not desirable to generate an entirely
new schedule, but to repair the

existing schedule, so techniques
which modify existing schedules are
required. Because many of these
contingencies will happen during
scheduling execution, reactive
rescheduling must be fast. If the same
techniques are used for scheduling
and rescheduling, then the
scheduling strategies must be
designed with the speed issue in
mind. If different systems are used,
then careful attention must be paid to

ensure that the output of the initial
scheduling process can support the
input requirements for the
rescheduling system.

The planning and scheduling process
across time. Mission operations

planning and scheduling for
applications such as the Shuttle or
Space Station Freedom begin years
ahead of the actual mission. The

different phases of this process, from
the strategic planning, years ahead of
time; to the short term scheduling, just
shortly before execution; to near real
time reactive rescheduling, have
different characteristics, and different
requirements. The length and

granularity of the timeline are different
for each of these phases, and the
level of detail about the activities to be

placed on a timeline are also different.

This is actually an expansion of the
point made earlier, that any given
scheduling application has a
multitude of requirements. In this
case, entirely different systems may
be needed to accommodate each

phase of the planning and scheduling
process. In addition to creating
systems for each of these phases,
ways of transitioning information
between the phases is required. This
may require some consideration of
commonalities for data structures

between the system, and may require
that the strategies used in each phase
are complementary or synchronized.

Conclusions

What can AI do for scheduling
applications? As pieces of an overall
system architecture, AI techniques
can be used quite successfully.
Methods for handling various types of
computational complexity have been
well explored. Techniques for
representing complex objects and
relationships, constraint management,
planning, and representation of expert
knowledge and methods are all areas
of strength in the field of AI. Intelligent
human-machine interface techniques
can be used profitably to help systems

fit into operational contexts. The key

4o

is to identify those places where a
specific AI technique is in fact the
preferable solution, and to integrate
that technique into the overall
architecture.

Much of the discussion in this paper
addresses issues that are not unique
to the development of AI systems, but
which are pertinent to any software
development for a complex functional
system. The points about matching
techniques to problem characteristics
and taking into consideration the
operational context of the scheduling
application have to do with good
system design in general, rather than
design issues unique to AI. This is as
it should be. As AI enters mainstream

use, AI techniques become another
set of methods in the repository of
software solutions. The flip side of
this is that AI systems are not immune
to the problems associated with
design for complex applications.
Detailed problem analysis is the only
way to find a good match between
these techniques and the
applications. The specifics of the
problem, and the operational context

into which the system is embedded
must help to determine the form of the
solution proposed.

Space Applications of Artificial
Intelligence (these proceedings).

Graham, R.L. (March, 1978) The
combinatorial mathematics of

scheduling. Scientific American.
124-132.

Ibaraki T. & Katoh, N. (1988)
Resource allocation problems:
algorithmic approaches. Cam bridge,
MA: MIT Press.

Parunak, H. (1987) Why

scheduling is hard (and how to do it
anyway). Proceedings of the 1987
Material Handling Focus. Georgia
Institute of Technology.

Smith, S.F. Fox, M.S. & Ow, P.S.

(Fall, 1986) Constructing and
maintaining detailed production
plans: investigations into the
development of knowledge-based
factory scheduling systems. A I
Magazine, 45-61.

References

Berner, C.A. Durham, R. & Reilly,
N.B. (1989) Ground data systems
resource allocation process.
Goddard Conference on Space
Applications of Artificial Intelligence.
Greenbelt, MD. NASA Conference
Publication 3033, 37-47.

Britt, D.L. Geoffroy, A.L. & Gohring,
J.R. (1990) Managing temporal
relations. Goddard Conference on

41

