3,281 research outputs found
Long range transport of ultra cold atoms in a far-detuned 1D optical lattice
We present a novel method to transport ultra cold atoms in a focused optical
lattice over macroscopic distances of many Rayleigh ranges. With this method
ultra cold atoms were transported over 5 cm in 250 ms without significant atom
loss or heating. By translating the interference pattern together with the beam
geometry the trap parameters are maintained over the full transport range.
Thus, the presented method is well suited for tightly focused optical lattices
that have sufficient trap depth only close to the focus. Tight focusing is
usually required for far-detuned optical traps or traps that require high laser
intensity for other reasons. The transport time is short and thus compatible
with the operation of an optical lattice clock in which atoms are probed in a
well designed environment spatially separated from the preparation and
detection region.Comment: 14 pages, 6 figure
Dealing with Uncertainties in Asteroid Deflection Demonstration Missions: NEOTwIST
Deflection missions to near-Earth asteroids will encounter non-negligible
uncertainties in the physical and orbital parameters of the target object. In
order to reliably assess future impact threat mitigation operations such
uncertainties have to be quantified and incorporated into the mission design.
The implementation of deflection demonstration missions offers the great
opportunity to test our current understanding of deflection relevant
uncertainties and their consequences, e.g., regarding kinetic impacts on
asteroid surfaces. In this contribution, we discuss the role of uncertainties
in the NEOTwIST asteroid deflection demonstration concept, a low-cost kinetic
impactor design elaborated in the framework of the NEOShield project. The aim
of NEOTwIST is to change the spin state of a known and well characterized
near-Earth object, in this case the asteroid (25143) Itokawa. Fast events such
as the production of the impact crater and ejecta are studied via cube-sat
chasers and a flyby vehicle. Long term changes, for instance, in the asteroid's
spin and orbit, can be assessed using ground based observations. We find that
such a mission can indeed provide valuable constraints on mitigation relevant
parameters. Furthermore, the here proposed kinetic impact scenarios can be
implemented within the next two decades without threatening Earth's safety.Comment: Accepted for publication in the proceedings of the IAUS 318 -
Asteroids: New Observations, New Models, held at the IAU General Assembly in
Honolulu, Hawaii, USA 201
Determinants of Gray Wolf (Canis lupus) Sightings in Denali National Park
Wildlife viewing within protected areas is an increasingly popular recreational activity. Management agencies are often tasked with providing these opportunities, yet quantitative analyses of factors influencing wildlife sightings are lacking. We analyzed locations of GPS-collared wolves and wolf sightings from 2945 trips in Denali National Park and Preserve, Alaska, USA, to provide a mechanistic understanding of how viewing opportunities are influenced by attributes of wolves and physical, biological, and harvest characteristics. We found that the presence of masking vegetation, den site proximity to the road, pack size, and presence of a wolf harvest closure adjacent to the park affected wolf sightings, and the influence of den proximity on sightings depended on harvest management. Wolf sightings increased with den site proximity to the road in years with a harvest closure adjacent to the park but not in the absence of the closure. The effect of the harvest closure on sightings was similar in magnitude to an increase in pack size by two wolves or a more than a two-fold decrease in masking vegetation. These findings were consistent across a 10-fold change in spatial resolution. Quantitative analysis of the factors influencing wildlife sightings provides valuable insight for agencies tasked with managing viewing opportunities. L’observation de la faune dans les aires protégées est un loisir qui prend de plus en plus d’ampleur. Souvent, les organismes de gestion ont le mandat d’offrir de telles activités et pourtant, il n’y a toujours pas d’analyses quantitatives des facteurs qui exercent une influence sur les observations fauniques. Nous avons analysé les emplacements de loups munis de colliers GPS et les observations de loups découlant de 2 945 déplacements au parc national et à la réserve de Denali, en Alaska, aux États-Unis afin d’obtenir une compréhension mécaniste de la manière dont les activités d’observation sont influencées par les attributs des loups ainsi que par les caractéristiques physiques, biologiques et de récolte. Nous avons remarqué que la présence de végétation masquante, la proximité des tanières de la route, la taille des meutes et la présence d’une interdiction de récolte de loups dans le secteur adjacent au parc ont eu un effet sur les observations de loups, et que l’influence de la proximité des tanières par rapport aux observations dépendait de la gestion des récoltes. Les observations de loups augmentaient en fonction de la proximité des tanières par rapport à la route au cours des années pendant lesquelles il y avait interdiction de récolte de loups dans le secteur adjacent au parc, mais ce n’était pas le cas en l’absence d’interdiction. L’ampleur de l’effet de l’interdiction de récolte sur les observations était semblable à une augmentation de la taille de la meute correspondant à deux loups ou plus, ou à la diminution de plus du double de la végétation masquante. Ces constatations se recoupaient dans un changement correspondant au décuple dans la résolution spatiale. L’analyse quantitative des facteurs influençant les observations fauniques offre une importante perspective aux organismes dont le mandat consiste à gérer les activités d’observation. 
CCN2 reduction mediates protective effects of BMP7 treatment in obstructive nephropathy
Treatment with rhBMP7 exerts profound protective effects in a wide variety of experimental models of renal disease. However, little is known about how these protective effects are mediated, and which cells in the kidney are targeted by exogenous rhBMP7 treatment. To determine if rhBMP7 increases glomerular and tubulointerstitial canonical BMP signaling, we performed Unilateral Ureteral Obstruction w(UUO, a widely used obstructive nephropathy model) in mice reporting transcriptional activity downstream of canonical BMP signaling by the expression of GFP under the BMP Responsive Element of the Id1 promoter (BRE:gfp mice). We also analysed the impact of rhBMP7 treatment on severity of the UUO phenotype, on TGFβ signaling, and on expression of CCN2 (CTGF). Despite profound protective effects with respect to morphological damage, macrophage infiltration, and fibrosis, no significant difference in GFP-expression was observed upon rhBMP7 administration. Also TGFβ signalling was similar in rhBMP7 and vehicle treated mice, but CCN2 expression in obstructed kidneys was significantly reduced by rhBMP7 treatment. Of note, in heterozygous CCN2 mice (CCN2+/−) treatment with rhBMP7 did not (further) reduce the severity of kidney damage in the UUO-model. These data suggest that protection against obstructive nephropathy by exogenous rhBMP7 treatment relies primarily on non-canonical BMP signaling, and may be mediated in large part by downregulation of CCN2 expression
Curcumin as Treatment for Bladder Cancer : A Preclinical Study of Cyclodextrin-Curcumin Complex and BCG as Intravesical Treatment in an Orthotopic Bladder Cancer Rat Model
Objective. To evaluate the antitumor effect of cyclodextrin-curcumin complex (CDC) on human and rat urothelial carcinoma cells in vitro and to evaluate the effect of intravesical instillations of CDC, BCG, and the combination in vivo in the AY-F344 orthotopic bladder cancer rat model. Curcumin has anticarcinogenic activity on urothelial carcinoma and is therefore under investigation for the treatment of non-muscle invasive bladder cancer. Curcumin and BCG share immunomodulating pathways against urothelial carcinoma. Methods. Curcumin was complexed with cyclodextrin to improve solubility. Four human urothelial carcinoma cell lines and the AY-27 rat cell line were exposed to various concentrations of CDC in vitro. For the in vivo experiment, the AY-27 orthotopic bladder cancer F344 rat model was used. Rats were treated with consecutive intravesical instillations of CDC, BCG, the combination of CDC+BCG, or NaCl as control. Results. CDC showed a dose-dependent antiproliferative effect on all human urothelial carcinoma cell lines tested and the rat AY-27 urothelial carcinoma cell line. Moreover, intravesical treatment with CDC and CDC+BCG results in a lower percentage of tumors (60% and 68%, respectively) compared to BCG (75%) or control (85%). This difference with placebo was not statistically significant (p=0.078 and 0.199, respectively). However, tumors present in the placebo and BCG-treated rats were generally of higher stage. Conclusions. Cyclodextrin-curcumin complex showed an antiproliferative effect on human and rat urothelial carcinoma cell lines in vitro. In the aggressive orthotopic bladder cancer rat model, we observed a promising effect of CDC treatment and CDC in combination with BCG.Peer reviewe
Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA
Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in which in-stream habitat for most life stages has a consistently positive response to fire. This compares to the historic distribution of spring Chinook, in which in-stream habitat exhibited a variable response to fire, including decreases in habitat quality overall or for specific life stages. This suggests that as the distribution of spring Chinook has decreased, they now occupy those areas with the most positive potential response to fire. Our work shows the potentially positive link between wildfire and aquatic habitat that supports forest managers in setting broader goals for fire management, perhaps leading to less fire suppression in some situations
New Insights into Bacterial Chemoreceptor Array Structure and Assembly from Electron Cryotomography
Bacterial chemoreceptors cluster in highly ordered, cooperative, extended arrays with a conserved architecture, but the principles that govern array assembly remain unclear. Here we show images of cellular arrays as well as selected chemoreceptor complexes reconstituted in vitro that reveal new principles of array structure and assembly. First, in every case, receptors clustered in a trimers-of-dimers configuration, suggesting this is a highly favored fundamental building block. Second, these trimers-of-receptor dimers exhibited great versatility in the kinds of contacts they formed with each other and with other components of the signaling pathway, although only one architectural type occurred in native arrays. Third, the membrane, while it likely accelerates the formation of arrays, was neither necessary nor sufficient for lattice formation. Molecular crowding substituted for the stabilizing effect of the membrane and allowed cytoplasmic receptor fragments to form sandwiched lattices that strongly resemble the cytoplasmic chemoreceptor arrays found in some bacterial species. Finally, the effective determinant of array structure seemed to be CheA and CheW, which formed a “superlattice” of alternating CheA-filled and CheA-empty rings that linked receptor trimers-of-dimer units into their native hexagonal lattice. While concomitant overexpression of receptors, CheA, and CheW yielded arrays with native spacing, the CheA occupancy was lower and less ordered, suggesting that temporal and spatial coordination of gene expression driven by a single transcription factor may be vital for full order, or that array overgrowth may trigger a disassembly process. The results described here provide new insights into the assembly intermediates and assembly mechanism of this massive macromolecular complex
Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling.
Transmembrane α-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr) and basic (Arg) residues help to lock α-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD) of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift) and orientation (tilt, rotation) of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 Å) shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (n = 100) ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors
Effects of thermal fluctuation and the receptor-receptor interaction in bacterial chemotactic signalling and adaptation
Bacterial chemotaxis is controlled by the conformational changes of the
receptors, in response to the change of the ambient chemical concentration. In
a statistical mechanical approach, the signalling due to the conformational
changes is a thermodynamic average quantity, dependent on the temperature and
the total energy of the system, including both ligand-receptor interaction and
receptor-receptor interaction. This physical theory suggests to biology a new
understanding of cooperation in ligand binding and receptor signalling
problems. How much experimental support of this approach can be obtained from
the currently available data? What are the parameter values? What is the
practical information for experiments? Here we make comparisons between the
theory and recent experimental results. Although currently comparisons can only
be semi-quantitative or qualitative, consistency is clearly shown. The theory
also helps to sort a variety of data.Comment: 26 pages, revtex. Journal version. Analysis on another set of data on
adaptation time is adde
Polarization spectroscopy and magnetically-induced dichroism of the potassium D2 lines
We study modulation-free methods for producing sub-Doppler, dispersive line
shapes for laser stabilization near the potassium D2 transitions at 767 nm.
Polarization spectroscopy is performed and a comparison is made between the use
of a mirror or beam splitter for aligning the counter-propagating pump and
probe beams. Conventional magnetically-induced dichroism is found to suffer
from a small dispersion and large background offset. We therefore introduce a
modified scheme, using two spatially separated pump-probe beam pairs. Finally
we compare our results to methods using phase modulation and heterodyne
detection.Comment: 11 pages, 8 figures; published versio
- …