980 research outputs found
Is There a Communication Media Bias In Development Projects?
It is important to recognize the biases that can influence media choices, applications, and social consequences
Are Amphipod invaders a threat to the regional biodiversity? Conservation prospects for the Loire River
The impact of invasions on local biodiversity is well established, but their impact on regional biodiversity has so far been only sketchily documented. To address this question, we studied the impact at various observation scales (ranging from the microhabitat to the whole catchment) of successive arrivals of non-native amphipods on the amphipod assemblage of the Loire River basin in France. Amphipod assemblages were studied at 225 sites covering the whole Loire catchment. Non-native species were dominant at all sites in the main channel of the Loire River, but native species were still present at most of the sites. We found that the invaders have failed to colonize most of tributaries of the Loire River. At the regional scale, we found that since the invaders first arrived 25 years ago, the global amphipod diversity has increased by 33% (from 8 to 12 species) due to the arrival of non-native species. We discuss the possibility that the lack of any loss of biodiversity may be directly linked to the presence of refuges at the microhabitat scale in the Loire channel and in the tributaries, which invasive species have been unable to colonize. The restoration of river quality could
increase the number of refuges for native species, thus
reducing the impact of invader
Structural insights into TDP-43 in nucleic-acid binding and domain interactions
TDP-43 is a pathogenic protein: its normal function in binding to UG-rich RNA is related to cystic fibrosis, and inclusion of its C-terminal fragments in brain cells is directly linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Here we report the 1.65 Å crystal structure of the C-terminal RRM2 domain of TDP-43 in complex with a single-stranded DNA. We show that TDP-43 is a dimeric protein with two RRM domains, both involved in DNA and RNA binding. The crystal structure reveals the basis of TDP-43's TG/UG preference in nucleic acids binding. It also reveals that RRM2 domain has an atypical RRM-fold with an additional β-strand involved in making protein–protein interactions. This self association of RRM2 domains produced thermal-stable RRM2 assemblies with a melting point greater than 85°C as monitored by circular dichroism at physiological conditions. These studies thus characterize the recognition between TDP-43 and nucleic acids and the mode of RRM2 self association, and provide molecular models for understanding the role of TDP-43 in cystic fibrosis and the neurodegenerative diseases related to TDP-43 proteinopathy
Longitudinal-Transverse Separations of Structure Functions at Low for Hydrogen and Deuterium
We report on a study of the longitudinal to transverse cross section ratio,
, at low values of and , as determined from
inclusive inelastic electron-hydrogen and electron-deuterium scattering data
from Jefferson Lab Hall C spanning the four-momentum transfer range 0.06 GeV. Even at the lowest values of , remains
nearly constant and does not disappear with decreasing , as expected. We
find a nearly identical behaviour for hydrogen and deuterium.Comment: 4 pages, 2 gigure
Challenges and Opportunities for Ecosystem-Based Management and Marine Spatial Planning in the Irish Sea
Ecosystem-Based Management (EBM) integrates the connections between land, air, water and all living things including human beings and their institutions. The location of the Irish Sea, between major historical industrial centres, its history of use and exploitation, combined with its hydrographic characteristics, have led to the current patterns of use. EBM efforts have been ongoing for over a decade but political boundaries have led to fragmented governance. The forthcoming UK exit from the European Union (EU) may pose further challenges. This chapter examines articulations between political boundaries, spatial scales of Marine Spatial Planning and nested social-ecological systems including the gyre in the western Irish Sea, and Dublin Bay. Examples of emerging best practices are provided and the challenges of data availability for ecosystem services are considered
Physics, Astrophysics and Cosmology with Gravitational Waves
Gravitational wave detectors are already operating at interesting sensitivity
levels, and they have an upgrade path that should result in secure detections
by 2014. We review the physics of gravitational waves, how they interact with
detectors (bars and interferometers), and how these detectors operate. We study
the most likely sources of gravitational waves and review the data analysis
methods that are used to extract their signals from detector noise. Then we
consider the consequences of gravitational wave detections and observations for
physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version
<http://www.livingreviews.org/lrr-2009-2
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
- …