2,271 research outputs found

    Potato breeding in the Netherlands: successful collaboration between farmers and commercial breeders.

    Get PDF
    Access and benefit sharing of plant genetic resources is a crucial but very complex, political and legalistic matter. Does the formal system work for family farmers? As we see in this special issue of Farming Matters, co-produced with Bioversity International, it poses many challenges and Farmers' Rights are rarely implemented in national law. At the same time, farmers around the world are leading successful initiatives for access and benefit sharing. In this special issue of Farming Matters also an article of the Bioimpuls potato breeding project was included: In the Netherlands a new PPB initiative called BioImpuls emerged in 2010, which engages organic potato farmers in a search to develop late blight-resistant vari-eties for the organic sector.

    A comparison between methods of analytical continuation for bosonic functions

    Get PDF
    In this article we perform a critical assessment of different known methods for the analytical continuation of bosonic functions, namely the maximum entropy method, the non-negative least-square method, the non-negative Tikhonov method, the Pad\'e approximant method, and a stochastic sampling method. Three functions of different shape are investigated, corresponding to three physically relevant scenarios. They include a simple two-pole model function and two flavours of the non-interacting Hubbard model on a square lattice, i.e. a single-orbital metallic system and a two-orbitals insulating system. The effect of numerical noise in the input data on the analytical continuation is discussed in detail. Overall, the stochastic method by Mishchenko et al. [Phys. Rev. B \textbf{62}, 6317 (2000)] is shown to be the most reliable tool for input data whose numerical precision is not known. For high precision input data, this approach is slightly outperformed by the Pad\'e approximant method, which combines a good resolution power with a good numerical stability. Although none of the methods retrieves all features in the spectra in the presence of noise, our analysis provides a useful guideline for obtaining reliable information of the spectral function in cases of practical interest.Comment: 13 pages, 9 figure

    A Spitzer IRAC Census of the Asymptotic Giant Branch Populations in Local Group Dwarfs. II. IC 1613

    Full text link
    We present Spitzer Space Telescope IRAC photometry of the Local Group dwarf irregular galaxy IC 1613. We compare our 3.6, 4.5, 5.8, and 8.0 micron photometry with broadband optical photometry and find that the optical data do not detect 43% and misidentify an additional 11% of the total AGB population, likely because of extinction caused by circumstellar material. Further, we find that a narrowband optical carbon star study of IC 1613 detects 50% of the total AGB population and only considers 18% of this population in calculating the carbon to M-type AGB ratio. We derive an integrated mass-loss rate from the AGB stars of 0.2-1.0 x 10^(-3) solar masses per year and find that the distribution of bolometric luminosities and mass-loss rates are consistent with those for other nearby metal-poor galaxies. Both the optical completeness fractions and mass-loss rates in IC 1613 are very similar to those in the Local Group dwarf irregular, WLM, which is expected given their similar characteristics and evolutionary histories.Comment: Accepted by ApJ, 26 pages, 10 figures, version with high-resolution figures available at: http://webusers.astro.umn.edu/~djackson

    Spitzer SAGE-SMC Infrared Photometry of Massive Stars in the Small Magellanic Cloud

    Get PDF
    We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer, SAGE-SMC survey database, for which we present uniform photometry from 0.3-24 um in the UBVIJHKs+IRAC+MIPS24 bands. We compare the color magnitude diagrams and color-color diagrams to those of the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 um are a few very luminous hypergiants, 4 B-type stars with peculiar, flat spectral energy distributions, and all 3 known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in the SMC, respectively, when compared to the LMC, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A & F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.Comment: 23 pages, 17 figures, 5 tables, accepted for publication in the Astronomical Journa

    The composition and nature of the dust shell surrounding the binary AFGL 4106

    Get PDF
    We present infrared spectroscopy and imaging of AFGL~4106. The 2.4-5 micron ISO-SWS spectrum reveals the presence of a cool, luminous star (T_eff ~ 3750 K) in addition to an almost equally luminous F star (T_eff ~ 7250 K). The 5-195 micron SWS and LWS spectra are dominated by strong emission from circumstellar dust. We find that the dust consists of amorphous silicates, with a minor but significant contribution from crystalline silicates. The amorphous silicates consist of Fe-rich olivines. The presence of amorphous pyroxenes cannot be excluded but if present they contain much less Fe than the amorphous olivines. Comparison with laboratory data shows that the pure Mg-end members of the crystalline olivine and pyroxene solid solution series are present. In addition, we find strong evidence for simple oxides (FeO and Al2O3) as well as crystalline H2O ice. Several narrow emission features remain unidentified. Modelling of the dust emission using a dust radiation transfer code shows that large grains (~1 micron) must be present and that the abundance of the crystalline silicates is between 7 and 15% of the total dust mass, depending on the assumed enstatite to forsterite ratio, which is estimated to be between 1 and 3. The amorphous and crystalline dust components in the shell do not have the same temperature, implying that the different dust species are not thermally coupled. We find a dust mass of ~3.9 x 10^-2 M_sol expelled over a period of 4 x 10^3 years for a distance of 3.3 kpc. The F-star in the AFGL~4106 binary is likely a post-red-supergiant in transition to a blue supergiant or WR phase.Comment: 22 pages (including 12 figures), accepted by Astronomy and Astrophysic

    Hubble Space Telescope imaging of the compact elliptical galaxy M32 reveals a dearth of carbon stars

    Get PDF
    We present new {\em Hubble Space Telescope} WFC3/IR medium-band photometry of the compact elliptical galaxy M32, chemically resolving its thermally pulsating asymptotic giant branch stars. We find 2829 M-type stars and 57 C stars. The carbon stars are likely contaminants from M31. If carbon stars are present in M32 they are so in very low numbers. The uncorrected C/M ratio is 0.020 ±\pm 0.003; this drops to less than 0.007 after taking into account contamination from M31. As the mean metallicity of M32 is just below solar, this low ratio of C to M stars is unlikely due to a metallicity ceiling for the formation of carbon stars. Instead, the age of the AGB population is likely to be the primary factor. The ratio of AGB to RGB stars in M32 is similar to that of the inner disc of M31 which contain stars that formed 1.5--4 Gyr ago. If the M32 population is at the older end of this age then its lack of C-stars may be consistent with a narrow mass range for carbon star formation predicted by some stellar evolution models. Applying our chemical classifications to the dusty variable stars identified with {\em Spitzer}, we find that the x-AGB candidates identified with {\em Spitzer} are predominately M-type stars. This substantially increases the lower limit to the cumulative dust-production rate in M32 to >> 1.97 ×105\times 10^{-5} Myr1{\rm M}_{\odot} \, {\rm yr}^{-1}.Comment: 10 pages, 7 figures, submitted MNRAS 7/12/2

    Carbon enrichment of the evolved stars in the Sagittarius dwarf spheroidal

    Full text link
    We present spectra of 1142 colour-selected stars in the direction of the Sagittarius Dwarf Spheroidal (Sgr dSph) galaxy, of which 1058 were taken with VLT/FLAMES multi-object spectrograph and 84 were taken with the SAAO Radcliffe 1.9-m telescope grating spectrograph. Spectroscopic membership is confirmed (at >99% confidence) for 592 stars on the basis of their radial velocity, and spectral types are given. Very slow rotation is marginally detected around the galaxy's major axis. We identify five S stars and 23 carbon stars, of which all but four carbon stars are newly-determined and all but one (PQ Sgr) are likely Sgr dSph members. We examine the onset of carbon-richness in this metal-poor galaxy in the context of stellar models. We compare the stellar death rate (one star per 1000-1700 years) to known planetary nebula dynamical ages and find that the bulk population produce the observed (carbon-rich) planetary nebulae. We compute average lifetimes of S and carbon stars as 60-250 and 130-500 kyr, compared to a total thermal-pulsing asymptotic giant branch lifetime of 530-1330 kyr. We conclude by discussing the return of carbon-rich material to the ISM.Comment: 14 pages, 10 figures, accepted MNRA
    corecore