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In this paper we perform a critical assessment of different known methods for the analytical continuation
of bosonic functions, namely, the maximum entropy method, the non-negative least-squares method, the non-
negative Tikhonov method, the Padé approximant method, and a stochastic sampling method. Four functions
of different shape are investigated, corresponding to four physically relevant scenarios. They include a simple
two-pole model function; two flavors of the tight-binding model on a square lattice, i.e., a single-orbital metallic
system and a two-orbital insulating system; and the Hubbard dimer. The effect of numerical noise in the input data
on the analytical continuation is discussed in detail. Overall, the stochastic method by A. S. Mishchenko et al.
[Phys. Rev. B 62, 6317 (2000)] is shown to be the most reliable tool for input data whose numerical precision
is not known. For high-precision input data, this approach is slightly outperformed by the Padé approximant
method, which combines a good-resolution power with a good numerical stability. Although none of the methods
retrieves all features in the spectra in the presence of noise, our analysis provides a useful guideline for obtaining
reliable information of the spectral function in cases of practical interest.

DOI: 10.1103/PhysRevB.94.245140

I. INTRODUCTION

Strongly correlated materials exhibit a wide range of exotic
physical phenomena, ranging from magnetism to supercon-
ductivity [1]. This rich physics is interesting for the scientific
community since it has a high potential for future technological
applications. In the last few decades several theories have
been developed to describe the electronic structure of strongly
correlated materials with a good accuracy, e.g., the com-
bination of density-functional theory (DFT) and dynamical
mean-field theory (DMFT) [2–5]. Practical calculations for
systems at finite temperature are usually performed using
the Green’s function formalism for complex energies [6,7].
In this approach determining physical observables requires
an analytical continuation from complex energies (Matsubara
frequencies) to real energies, as depicted in Fig. 1.

Traditionally, the analytical continuation of one-particle
Green’s functions has received the most attention since it is
related to the one-particle spectral function. The latter not
only is of fundamental importance but can also be probed
(more or less) directly via various types of photoemission
experiments. Over the last few years, however, dynamical
two-particle quantities have become more and more important
[8–16]. Significant examples include the electron-energy-
loss spectrum (EELS) [9,13] and dynamical susceptibilities
[15,17,18]. Physically, the two-particle spectrum contains
several interesting features, such as low-energy dispersive
Goldstone modes, Landau damping of collective modes, and
sharp transitions between isolated energy levels. Even in a
weakly interacting Fermi liquid, the two-particle spectrum
presents some of these interesting features [7]. From a more
technical point of view, two-particle quantities also play an
important role in the treatment of nonlocal interaction in
DMFT-based approaches such as extended DMFT (EDMFT)
[19–23] and its extension dual boson [24] by describing the
feedback of collective excitations on the one-particle spectrum.

Similar to the one-particle Green’s function, two-particle
quantities are usually obtained on the Matsubara axis. How-

ever, whereas the one-particle Green’s function is determined
on the fermionic Matsubara frequencies, the two-particle quan-
tities are calculated on the bosonic Matsubara frequencies.
Some physical information, such as the occurrence of charge-
order transitions [11,25,26], can be obtained directly from
computational data on the Matsubara axis at zero frequency.
However, the full dynamical susceptibilities, as well as related
observables such as the EELS and the plasmon spectrum,
require an analytical continuation to real energies. It is easy
to understand why finding a reliable method for the analytical
continuation of two-particle functions has evolved from a niche
problem to a necessity in computational many-body physics.

The usual methods of analytical continuation of fermionic
functions can, with the appropriate kernel and symmetry
relations, also be used for bosonic functions [27], as well
as for more exotic and sophisticated cases [28,29]. It was
previously shown that the maximum entropy method (MEM)
is able to perform the analytical continuation of the optical
conductivity with good accuracy [30]. More recently, in the
context of EDMFT, Huang et al. [12] focused on the retarded
interaction, emphasizing that a modified version of MEM [31]
leads to a good analytical continuation. While these studies
provide a very interesting and useful analysis, they do not
cover the applicability of various methods to functions of
different shapes and characters. So far, a more complete study
of the analytical continuation problem for bosonic functions is
lacking. In this work we intend to provide such an analysis by
considering five different methods of analytical continuation
in four physically relevant scenarios. In addition to the MEM
[27,30,32–37], we will also test the non-negative least-squares
(NNLS) method [38,39], the non-negative Tikhonov (NNT)
method [39,40], the Padé approximant (Padé) method [41,42],
and Mishchenko’s stochastic sampling method [43,44]. Fur-
thermore, we will investigate the effect of numerical noise on
the quality of the continuation in connection to the usage of
quantum Monte Carlo (QMC) techniques (see, e.g., Ref. [45]).

This paper is structured as follows: in Sec. II we review
bosonic Green’s functions and their analytical and symmetry
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FIG. 1. Schematic illustration of the analytic continuation of a
bosonic response function χ (z). The values χ (iωn) at the Matsubara
frequencies iωn are used to reconstruct the function χ (E + iδ+) just
above the axis of real energies.

properties. In Sec. III a brief introduction to the various
continuation schemes is given. Then, in Sec. IV, we describe
the different testing cases and highlight the reasons why they
are interesting. In Sec. V, we show and analyze the results of
the tests. Finally, in Sec. VI we present the conclusions of our
study, including a comparative summary of the performance
of the continuation methods investigated.

II. BOSONIC GREEN’S FUNCTIONS

The analytical continuation consists of obtaining a function
χ (z) in the whole complex plane from a finite set of values. The
focus in this work is on functions with bosonic symmetry that
are known on a finite number of bosonic Matsubara frequencies
iωn = 2nπT i, where T is the temperature and n is an integer
number. From this partial knowledge, we intend to extract the
values of the function in the entire complex plane, especially
just above the real axis, for z = E + iδ.

The analytical continuation problem can be formulated in
terms of the spectral function ρ(E) by means of the Hilbert
transform

χ (iωn) =
∫ ∞

−∞
dE

1

iωn − E
ρ(E). (1)

This equation is an example of the Fredholm equation of the
first kind. This inversion problem, as well as the methods used
to solve it, actually appear across many different disciplines.
We focus on bosonic functions, with the symmetry that its
spectral function is an odd function, i.e., ρ(E) = −ρ(−E).
Examples of odd bosonic functions are the density-density
correlation function 〈n̂n̂〉 and the spin-spin correlation function
〈ŜzŜz〉. Correlation functions of noncommuting observables,
such as 〈Ŝx Ŝy〉, are, in general, not odd. Our study does not
include this type of function. The oddness allows us to simplify
Eq. (1) to

χ (iωn) =
∫ ∞

0
dE

−2E

ω2
n + E2

ρ(E). (2)

From this equation we find that for large Matsubara frequen-
cies χ (iωn) is asymptotically proportional to ω−2

n . Without the
odd symmetry of ρ, one would obtain an asymptotic behavior

as ω−1
n , like for the one-particle Green’s function. Furthermore,

χ (iωn) is purely real, and χ (iωn) = χ (−iωn). It follows
from the analytical properties of χ (z) that χ (iωn) decreases
monotonously as a function of iωn [46]. The correct symmetry
can be enforced in the analytical continuation procedure either
explicitly by using Eq. (2) or implicitly by including both
positive and negative Matsubara frequencies as input points.
This issue is studied in more detail in Appendix A.

III. CONTINUATION ALGORITHMS

The analytical continuations are performed by means of five
different methods. We use our own in-house implementations
for all algorithms except for Mishchenko’s method. For
Mishchenko’s method we use an message passing interface-
parallelized version of the original code presented in Ref. [43].
Here, a brief introduction to these algorithms is given.

A. NNLS method

Discretizing the integral in Eq. (2) makes it possible to
reformulate the problem as a system of linear equations

χ (iωn) =
∑

j

fj

−2Ej

ω2
n + E2

j︸ ︷︷ ︸
Kn,j

ρj , (3)

where fj is a quadrature weight and Kn,j is the matrix to invert.
However, this approach would not work in practice since
obtaining ρ(E), once χ (iωn) is given, is an ill-posed problem.
The NNLS method solves Eq. (3) in a least-squares sense
and stabilizes the solution by enforcing the known symmetry
property ρ(E)E � 0. This means finding a non-negative
solution to a least-squares problem:

min
ρ�0

‖χ − K ρ‖2. (4)

Here, χ and ρ are vectors containing the values χ (iωn) and ρj

on the discrete points of Eq. (3). The NNLS problem can be
solved iteratively as described extensively in Ref. [38].

B. NNT method

For ill-posed problems, regularizations are commonly
used. One of the most famous regularization methods is the
Tikhonov method [40]. Applying the Tikhonov method to the
problem of analytical continuation defines the NNT method as

min
ρ�0

‖χ − K ρ‖2 + α‖ρ‖2, (5)

where α is a weight parameter that can be determined by
the L-curve method [40], which selects α corresponding to
the smallest value of ln(‖χ − K ρα‖2) + ln(‖ρα‖2). Here, ρα

denotes the solution of Eq. (5) for a fixed α.

C. MEM

Another famous regularization method is the maximum
entropy method [27,30,32–37]. This method maximizes the
Neumann entropy for the spectral function. Formulated as a
minimization problem, the equations become

min
ρ�0

‖χ − K ρ‖2 + α‖S[ρ]‖, (6)

245140-2



COMPARISON BETWEEN METHODS OF ANALYTICAL . . . PHYSICAL REVIEW B 94, 245140 (2016)

where the entropy

S[ρ] =
∫

dEρ(E) ln

(
ρ(E)

m(E)

)

≈
∑

j

fjρj ln

(
ρj

mj

)
(7)

contains a default model m(E), which can incorporate a priori
knowledge about the spectral function.

D. Padé approximant method

The Padé approximant method [41,42] is based on a fitting
procedure. This method starts with a rational polynomial
ansatz for χ (z) with unknown coefficients and fits this ansatz
to the known values at the Matsubara axis χ (iωn). In this
way one can reconstruct the function in the entire complex
plane. The Padé method can be formulated as a matrix
problem [41], which improves its numerical accuracy. As
recently proposed [47], one can enhance the stability of the
continuations (especially in the presence of Matsubara noise)
by taking an average of several Padé approximants, obtained
by varying the number of Padé coefficients and Matsubara
points in the fitting procedure.

E. Mishchenko’s stochastic sampling method

Finally, we consider the stochastic sampling method pro-
posed by Mishchenko et al. [43,44]. In this method the spectral
function is approximated by a set c of rectangles R, i.e.,

ρc(ω) =
∑
R∈c

R{h,b,m}(ω).

The rectangles R are defined by their height h, width b,
and center position m. A stochastic algorithm updates the
rectangles randomly and accepts the changes according to
a Metropolis algorithm based on the difference between
the known function χ (iωn) and the corresponding function
obtained from ρc(ω). Combining this update scheme with a
deterministic minimization of the Matsubara difference further
improves the performance of the method. An average over
different independent Monte Carlo chains is taken to minimize
the influence of noise. Since the algorithm uses a condition for
the sum of the rectangle weights, we scale ρ by introducing
ρ̃(E) = −2

Eχ0
ρ(E). Instead of finding ρ by solving Eq. (2), we

calculate ρ̃, which has to obey

χ̃ (iωn) = χ (iωn)

χ0
=

∫ ∞

0
dE

E2

ω2
n + E2

ρ̃(E). (8)

For n = 0 we have the desired normalization condition 1 =∫ ∞
0 dE ρ̃(E). Once ρ̃ is found, we scale back to obtain ρ.

This rescaling can, in principle, be used for the other methods
as well, with the exception of Padé where the continuation is
not done by solving Eq. (2).

IV. MODEL DESCRIPTIONS

To investigate the quality of the analytical continuation
provided by the different methods we focus on test functions
that are known in the entire complex plane, including the real-

energy axis. The functions are first evaluated at the Matsubara
energies and then analytically continued to the real axis. In an
ideal situation, the solution obtained by analytical continuation
coincides with the original exact values. However, in practice,
some differences arise due to the limited precision and amount
of input data.

The continuation becomes more difficult when we add
numerical noise to the Matsubara data, which models what
happens in real calculations such as by, e.g., QMC methods.
There, the noise typically scales inversely with the square
root of the computational time. As a practical example, the
numerical noise in dual boson calculations [25] is often
in the 0.1% range. The numerical noise is modeled by adding
relative Gaussian noise to each Matsubara point, χ (iωn)(1 +
ε), where ε is sampled from a Gaussian distribution with
zero mean and a standard deviation σ . We use the same σ

for all frequencies. In realistic QMC simulations, the noise
level will usually depend on the Matsubara frequency iωn in a
complicated way. This issue will be investigated more in detail
in Sec. V D for the Hubbard dimer.

It is important to individuate test functions that are realistic
and cover bosonic functions of different character as one
would encounter in practice. Naturally, the exact real-energy
solutions of many of the most interesting systems are not
known, so we need to find realistic but tractable cases.
Here, we consider four scenarios: (i) a two-pole model,
(ii) the momentum-resolved Lindhard function of the two-
dimensional doped tight-binding model, (iii) that of a band
insulator with two identical bands separated by a gap, and (iv)
the Hubbard dimer. These four functions, which are explicitly
described in Sec. V, cover sharp features, a sharp low-energy
zero-sound mode (that gets broadened by Landau damping
at larger momenta), high-frequency modes, features far away
from zero energy, and a combination of sharp features with a
broad base. The Hubbard dimer is chosen to model realistic
QMC noise.

All these functions are evaluated for Matsubara frequencies
corresponding to an inverse temperature β = 50 and at a
distance above the real axis δ = 0.05. For all methods we
used 100 Matsubara frequencies, except for Padé, where a
spectral average is done by varying the number of Matsubara
points between 50 to 100 in steps of 4. For the Hubbard dimer,
instead, we used 51 Matsubara frequencies. It is important to
use a sufficiently large number of Matsubara frequencies. We
study the dependence of the quality of the continuation on
the number of Matsubara frequencies in Sec. V A. We also
investigate the effect of including a few negative frequencies
in Appendix A.

V. RESULTS

In this section we present a comparison between the
different methods of analytical continuation when applied to
four selected test functions.

A. Two-pole model

The first function we address is a simple model function
whose analytical structure is

χ (z) = a1

z2 − E2
1

+ a2

z2 − E2
2

, (9)
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FIG. 2. Spectra for the two-pole test function. Left: a1 = 0.1, a2 = 0.335663, E1 = 0.7, and E2 = 1.2; right: a1 = 0.1, a2 = 0.7, E1 = 0.7,
and E2 = 2.5, as defined in Eq. (9).

where the parameters have the following values: a1 = 0.1,
a2 = 0.7, E1 = 0.7, and E2 = 2.5. For δ → 0+, the exact
spectrum has two distinct peaks at energies E1 and E2.
Therefore this function has similarities to the Gaussian two-
peak structure used in Ref. [12].

To understand how the position of the high-energy peak
influences the quality of the attained spectra, we also perform
tests with parameters E2 = 1.2 and a2 = 0.335663. This
choice preserves the height of both peaks in the two chosen
setups. The two spectra, corresponding to E2 = 1.2 and
E2 = 2.5, present different degrees of difficulty. For E2 = 1.2,
the two peaks in the spectrum are close to each other, and
therefore it is difficult to resolve them as two separate peaks.
For E2 = 2.5, on the other hand, the second peak is far away
from the first peak but also far away from zero energy (the
complex iωn axis). This makes it difficult to resolve the distant
peak.

In Fig. 2 the two exact spectra are reported and compared to
the analytical continuation obtained through the five methods
for three different noise levels. It is known that the Padé
method is much more sensitive to the precision of the input data
than the other methods. The various noise levels are therefore
chosen to illustrate the critical input precision where the Padé
method starts to fail. These noise levels are realistic for QMC
simulations [45], as also discussed in Sec. V D.

As the top panels of Fig. 2 show, for relatively low noise
(σ = 10−4), all methods capture the two peaks and their
positions correctly for both sets of parameters. The Padé
method performs the best if we also consider the height of
the peaks. Conversely, the MEM has the most difficulties to
resolve the distant peak at E2 = 2.5. This picture changes
drastically for intermediate noise levels (σ = 10−3), shown in
the middle panels of Fig. 2. For E2 = 1.2 (left panel), the
Padé method is not able to reproduce the two peaks and
finds only the one at low energy. The other methods also
gain spectral weight in between the peaks but are still able
to resolve both peaks. For E2 = 2.5 (right panel), results are
significantly better for all methods. Interestingly, the MEM
performs worse than the Padé method. In situations where

the input data are characterized by high noise (σ = 10−2),
depicted in the bottom panels of Fig. 2, both the MEM and the
Padé method fail to find distinct peaks and merge them into
one single broad peak. The other methods find distinct peaks
but locate them at the wrong energies, which is especially
evident for E2 = 1.2 (left panel). In any case, these methods
are still able to describe the basic physics correctly, i.e., the
presence of two well-defined peaks. In general, Mishchenko’s
method seems to offer the best results across various levels of
noise. Even for the highest noise (σ = 10−2), Mishchenko’s
method gives an acceptable description of the exact spectra.
Nevertheless, one has to notice, if two peaks are close to each
other, this approach tends to increase the spectral weight in
between the peaks. As a matter of fact, this problem is not
an intrinsic property of Mishchenko’s algorithm and is related
to an insufficient number of local updates in the sampling.
The dependence of Mishchenko’s results with respect to the
number of local updates is investigated in Appendix B. For the
two-pole model, for small noise levels, Mishchenko’s method
can achieve results as good as those of the Padé method,
although at the cost of a much bigger computational effort.

Finally, from the comparison of the left and right panels of
Fig. 2, one can conclude that partially overlapping peaks seem
to be more difficult to describe than having one peak close
to and one peak far from zero energy. This is not so trivial
since, usually, analytical continuation methods are supposed
to perform well to describe (even complex) structures close to
zero energy.

Number of Matsubara frequencies

It is also useful to illustrate how the quality of the analytical
continuation depends on the number of input points, e.g.,
the number of Matsubara frequencies. The quality of the
continuation can be measured through the difference between
the obtained ρ(E) and the exact function on the real axis
ρexact(E) in the following way:

Error =
∫ 5

0 dE|ρ(E) − ρexact(E)|∫ 5
0 dE|ρexact(E)|

, (10)
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FIG. 3. Integrated real-axis error for the two-pole model as a
function of the highest Matsubara point index nmax used. Top: a1 =
0.1, a2 = 0.335663, E1 = 0.7 and E2 = 1.2; bottom: a1 = 0.1, a2 =
0.7, E1 = 0.7, and E2 = 2.5, as defined in Eq. (9). Matsubara noise
level σ = 10−4 is used.

where the upper bound of the integrals is chosen to be
larger than the actual extension of the function. The error
measure given by Eq. (10) for the two-pole model with noise
σ = 10−4 is plotted in Fig. 3 with respect to different numbers
of the maximum Matsubara index nmax. Note that for the
Padé method the notion of nmax is a bit more complicated
to define since an average is done over several continuations
with varying numbers of input points and Padé coefficients
[47]. To make optimal usage of the averaging procedure,
both the number of input points and Padé coefficients take
values between nmax − 47 and nmax + 1 in steps of 4 under
the constraint of not having more coefficients than Matsubara
points. If nmax − 47 < 4, then 4 is used as the lower boundary
instead.

In Fig. 3, the general trend is that the quality of the
continuation initially improves with an increasing number of
Matsubara points. At some point, the error stabilizes. When
the typical energy scale on the real axis (E2) increases, this
stabilization point moves to higher Matsubara frequencies.
However, there are small variations to this general picture for
the different methods.

The error between the Padé continuation and the exact
function quickly drops at nmax ≈ 30 and is very small until
nmax ≈ 100 (or 120 for E2 = 2.5). When taking into account
more Matsubara points, the error increases. We attribute this
behavior mainly to the number of physical continuations in
the averaging procedure. For small nmax, the total number of
continuations is limited. For large nmax, the number of physical
continuations decreases significantly. For this particular test, at
least 30 to 40 physical continuations were needed to optimally
use the power of the averaging procedure. The continuations
obtained with NNT and NNLS, on the other hand, continue
improving when additional Matsubara frequencies are taken
into account. However, the improvement becomes smaller and
smaller. The MEM error quickly drops at 2nmaxπ/β ≈ 3E2

and decreases only slightly for higher nmax. The error of
the Mishchenko continuation stabilizes at a relatively small
number of Matsubara frequencies. For this method, we have
used the same number of local updates (15 000) for all
continuations. The behavior for more local updates is discussed
in Appendix B. It is conceivable that adding additional
frequencies does give extra information but also requires a
longer run time of the stochastic sampling.

B. Doped tight-binding model

For the second test, we use a metallic system, namely,
the tight-binding model on a square lattice with nearest-
neighbor hopping. The density-density correlation function
depends on the Matsubara frequency and on the momentum
q. The random-phase approximation [7,48] tells us that the
susceptibility in the presence of a weak interaction V (q) can
be obtained from the susceptibility χ of the noninteracting
system as

χ (iωn,q)−1 = χ (iωn,q)−1 − V (q). (11)

An example is the Hubbard model, with V (q) = U . Since the
interaction V (q) is independent of the Matsubara frequency,
for the purpose of investigating the analytical continuation,
it is sufficient to study the noninteracting density-density
susceptibility, which is given by the Lindhard function

χ (iωn,q) =
∑

p

nF (εp) − nF (εp+q)

εp − εp+q + iωn

, (12)

where the sum denotes an average over the Brillouin zone, nF

is the Fermi distribution, and the dispersion relation is

εp = −2t[cos px + cos py]. (13)

The energy scale of this model is given by the half bandwidth
D = 4t , where t is the hopping parameter. Therefore, we fix
the energy unit to D = 4t = 1. The chemical potential is set
to μ = −0.5, which corresponds approximately to a filling of
0.185 per spin flavor.

In Fig. 4 the analytical continuation of the momentum-
resolved Lindhard function for all methods is reported. The
panels in the first three columns correspond to data for various
levels of noise σ . The panels in the last column illustrate the
exact spectrum on the real axis, repeated in each row for an
easier comparison.

At small wave vectors (close to �), the susceptibility
exhibits a single low-energy mode, the zero-sound mode. This
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FIG. 4. Spectrum of the Lindhard function (− 1
π

Im[χ (ω + iδ)]) of the two-dimensional doped tight-binding model along the Brillouin
zone path � → X → M → �, obtained using Padé, NNLS, NNT, MEM, and Mishchenko’s methods. The noise level varies among the values
σ = 10−3, σ = 10−4, and σ = 10−10. All panels on the right-hand side show the exact spectrum for an easier comparison. The color map
denotes the intensity of the spectra, and contour lines are added at −1/π Im(χ ) = 0,0.15,0.30,0.45,0.60,0.75. For the NNLS plots not all
contour lines are displayed (see main text). The spectra for the M point separately are also reported in Fig. 5.

mode consists of low-energy excitations close to the Fermi
surface. Farther away from �, Landau damping broadens this
zero-sound mode. All methods correctly capture the zero-
sound mode. However, NNLS shows an unphysical splitting
of this mode into two branches roughly halfway from � → X.
The tendency of NNLS to introduce spurious peaks is even
more pronounced when going from X → M , and in fact, it is
not even possible to illustrate all contour lines in Fig. 4 without
compromising its readability. The complex spectral evolution
in the path X → M seems, indeed, rather difficult to describe
for all methods, especially for high noise. At the M point
the exact spectrum acquires a seemingly simpler structure,
consisting of a relatively flat bump between E = 1 and E = 2.
This point is analyzed in more detail in Fig. 5, which shows
that it is not so easy to capture the broad flat feature instead
of two separate peaks. Similar to the previous test function,

Padé correctly reproduces the spectrum at low noise but gives
a single sharp peak instead of a broad flat mode when σ is
increased. NNLS performs very poorly here, with a spectrum
of a few sharp peaks even at low noise, σ = 10−10. NNT does
a lot better compared to NNLS; the regularization flattens the
spectrum, although an unphysical local minimum remains at
σ = 10−4. Similarly, MEM also captures the general shape of
the spectrum, but again, an unphysical local minimum forms
between the main peaks. Mishchenko’s method is the only one
that correctly reproduces the very flat spectrum between E = 1
and E = 2 even for high noise. This feature is consistent with
the behavior observed in the top left panel of Fig. 2.

In general Mishchenko’s method performs the best across
various levels of noise, while NNLS leads to the poorest
continuation for this function. As expected, the quality of
the continuation obtained with Padé worsens quickly when
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FIG. 5. Spectrum at the M point for the Lindhard function of
the doped tight-binding model reported in Fig. 4. Data for two noise
levels, σ = 10−4 and σ = 10−10, are shown.

σ is increased. Interestingly, NNT seems to perform slightly
better for higher noise. For very low noise, the features are
sharper, and some spurious wiggles occur. These properties
influence strongly the applicability of NNT and Padé to
realistic problems where the exact function is unknown. The
MEM is rather robust to external noise, but for high-precision
data its quality seems inferior to both Mishchenko’s method
and Padé.

C. Band gap model

The final model function is useful to investigate realistic
features that are not close to zero energy. We again use a
tight-binding model on a square lattice with nearest-neighbor
hopping. Different from the previous test, we now consider
two nondegenerate bands. Again, we take 4t = 1 for the half
bandwidth. The two bands are shifted with respect to each
other by an energy Eshift = 3. Since the half bandwidth of both
bands is 1, there is an indirect gap of Egap = 1. In Eq. (12),
this would correspond to two bands with shifted dispersions
εp and ε′

p = εp + 3. We consider both excitations within one
band as well as between the two bands. The chemical potential
μ = 1.7 lies in the gap between the two bands. This model
could correspond to the presence of a magnetic field that splits
the dispersion of the electrons with spins up and down. The
electronic states with spin down have energy E↓ ∈ [−1,1]; that
is, they are all below the Fermi energy. The electronic states
with spin up, on the other hand, have energy E↑ ∈ [2,4]; that
is, they are all above the Fermi energy. Excitations between
the two bands have energies between E = 1 and E = 5.

In Fig. 6 the analytical continuation of the momentum-
resolved Lindhard function for all methods is reported. As
above, the panels in the first three columns correspond to data
for various levels of noise σ , while the panels in the last column
illustrate the exact spectrum on the real axis. At the � point,
the exact spectrum shows the presence of a single peak at
E = 3. This essential feature is captured by all methods and
for all levels of noise, although the MEM and the NNT method
exhibit the usual tendency to broaden the peak. Going from
� to X, the single peak splits into two distinct peaks, with
some spectral weight remaining in the intermediate region. To
illustrate this, Fig. 7(a) shows the spectrum half way between

� and X. At σ = 10−4 MEM, NNT, and Mishchenko’s method
all capture the widening of the peak as we move away from
the � point. However, only Mishchenko’s method captures
the gradual splitting into two peaks at this point. MEM and
NNT find the splitting closer to X. For smaller noise, i.e., for
σ = 10−10, the MEM is also capable of resolving the two-peak
structure at 1

2 (� → X). NNLS, NNT, and Padé fail to offer an
acceptable description of the spectrum at this point since they
also introduce one or more spurious peaks in between the two
physical peaks.

At the M point, the exact spectrum has a sharp peak at E =
3 with a very broad base. All methods, except for NNLS, give
the correct width but are not very accurate on the symmetric
character of the spectrum. This improves for lower noise levels,
but the sharp peak in the middle stays slightly broadened, as
can be seen in Fig. 7(b). These data show that Mishchenko’s
method is the only one to offer a fully satisfactory description
of the spectrum for σ = 10−4. It is also worth noticing that
although the Padé method does not fail too badly at M , the
general trend for σ = 10−4 observed in Fig. 6 is rather negative
and violates symmetry constraints. For even smaller noise,
σ = 10−10, all methods but NNLS give a very good description
of the spectrum at the M point.

In summary, for this model function, Mishchenko’s method
is stable with respect to input noise and clearly performs best
of all the methods for σ = 10−3. However, great care has to be
taken concerning the number of updates in the sampling chain,
as is investigated in Appendix B. The Padé method performs
quite well for high-precision data but fails badly when noise
is present. Finally, for intermediate levels of noise, MEM and
NNT also lead to reasonable results, although Mishchenko’s
method is still superior.

D. Hubbard dimer

Until now, we have shown only tests where a Gaussian
relative noise was added to the exact Matsubara data. In
practical applications, the size of the noise can vary strongly
for different Matsubara frequencies, and also the noisy data
can be correlated between Matsubara frequencies. To study
how this more realistic type of noise affects the continuation
procedure, here, we will apply a QMC solver to an exactly
solvable system: the Hubbard dimer.

The Hubbard dimer consists of two sites. These sites
can be occupied by electrons with spin either up or down.
Electrons can move to the other site, with an associated matrix
element −t , and two electrons with opposite spin on the same
site undergo a Coulomb repulsion U , as described with the
following Hamiltonian:

H = − t
∑

σ =↑ , ↓
i = 1,2
j �= i

c
†
iσ cjσ + U

∑
i=1,2

ni↑ni↓, (14)

where i and j are site indices, σ is the spin index, and c(†) and
n are the annihilation (creation) and number operators. From
this Hamiltonian, one can see that the total number of states
of the model is only 16. We consider this model in the grand-
canonical ensemble. The exact expressions for the dynamic
susceptibility are given in Ref. [49]. For our model function,
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FIG. 6. Spectrum of the Lindhard function for the band gap model (− 1
π

Im[χ (ω + iδ)]) along the Brillouin zone path � → X → M → �,
obtained using Padé, NNLS, NNT, MEM, and Mishchenko’s method. The noise level varies among the values σ = 10−3, σ = 10−4, and
σ = 10−10. All right panels show the exact spectrum. The color map denotes the intensity of the spectra, and contour lines are added at
−1/π Im(χ ) = 0,0.1,0.2,0.3,0.4,0.5,0.6. The spectra at the M point and at the 1

2 (� → X) point are reported separately in Fig. 7.

we use t = 0.25, U = 1, β = 50 at half filling. We consider
the equal-spin susceptibility 4〈ni,↑ni,↑〉, which is the sum of
the local charge and Sz susceptibilities, as found in Ref. [49].
This susceptibility contains two distinct energy scales, i.e., the
energy scale of the charge fluctuations and that of the spin
fluctuations.

We also solve the Hubbard dimer using determinant QMC
[50] in the open-source implementation QUEST [51]. The QMC
procedure and the measurements are performed in imaginary
time τ using a discrete uniform grid of 1000 τ points. We
perform a Fourier transform to Matsubara frequencies using
Simpson’s rule for integration. This simulation is repeated 300
times, using different random seeds.

As input data for the analytical continuations, we have used
both the exact data [49] with added relative Gaussian noise
and the average of the QMC simulations that contains realistic
QMC noise. The frequency dependence of the standard

deviation of the average QMC data normalized by the average
values is shown in Fig. 8(a). The Gaussian noise level added
to the exact data is also displayed for comparison. The
correlation of the QMC data between different Matsubara
frequencies can be seen from the correlation matrix, shown in
Fig. 8(b). A purely diagonal matrix means the data at different
Matsubara frequencies are not correlated. From Fig. 8(b),
however, one clearly sees that our QMC data are rather
correlated. To take into account the frequency dependence of
the standard deviation and the correlation between the different
Matsubara frequencies, the Cholesky decomposition of the
inverse covariance matrix [39,44(a)] is used. This requires,
however, more Monte Carlo measurements than the considered
Matsubara frequencies. It is not always possible to satisfy this
requirement. Therefore it is also convenient to perform the
analytical continuation for a covariance matrix that is set to
identity. This corresponds to assuming no correlation between
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FIG. 7. Spectrum at (a) the 1
2 (� → X) and (b) M points of the

Lindhard function for the band gap model in Fig. 6 for two noise
levels. σ = 10−4 and σ = 10−10.

data at different Matsubara frequencies and the same standard
deviation at all Matsubara frequencies.

Implementing the corrections due to the covariance ma-
trix is straightforward for NNLS, NNT, and MEM. In
Mishchenko’s method, it is a bit difficult to combine this
correction with the original relative deviation measure [43]
and the expression in Eq. (8). Therefore we instead use a
nonrelative least-squares deviation measure together with the
expression in Eq. (2) for this test model. Concerning the Padé
method, instead, implementing a correction due to the covari-
ance matrix is even more complex. A procedure similar to
what is done for the other methods leads to an impracticable
nonlinear system of equations, at least in Beach’s formulation
[41,47]. Therefore we have not considered the Padé method
for this analysis. We plan to address this issue more in detail
in future works.

In Fig. 9 we present the spectra obtained for the two sets
of input data, i.e., the exact data with Gaussian noise and
the QMC data. Let us first analyze the continuation of the
QMC data. Without including the covariances, all methods
that are able to resolve the high-energy peak locate it above
the exact solution. Taking into account the covariance matrix
shifts the high-energy peak down in energy, closer to the
exact position. The low-energy peak is slightly broadened
by considering the covariances, but these differences do not

FIG. 8. The noise characteristics of the input data for the analyt-
ical continuations for the Hubbard dimer. (a) The standard deviation
of the average QMC data between different simulations normalized
by the average values (blue) compared to the relative Gaussian
noise that is chosen to have σ = 8 × 10−3 (red). (b) Correlation
matrix (normalized covariance matrix) of the QMC data. The color
coding denotes the amount of correlation between two Matsubara
frequencies i,j .

seem very significative. We can then focus on the continuation
of the input data with Gaussian noise. The Gaussian noise
considered corresponds to σ = 8 × 10−3, which is slightly
bigger than the relative σ for the QMC data averaged over
the Matsubara points. For this model noise, the obtained
spectra are very similar to those obtained for the QMC input
data when the covariances are considered. Focusing on the
various methods for analytical continuation, we confirm the
features found in the previous sections. The NNLS method
and Mishchenko’s method are the only methods that resolve
both the low-energy and high-energy peaks. For the NNT and
MEM methods, the high-energy peak appears only as a very
broad shoulder. The covariance matrix increases the accuracy

245140-9
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FIG. 9. Spectra for the Hubbard dimer obtained with different
methods of analytic continuation. The blue spectra are obtained
from the exact data on the Matsubara axis with added relative
Gaussian noise σ = 8 × 10−3. The red and green spectra are obtained
from QMC data, where for the red spectra we used the Cholesky
decomposition of the inverse covariance matrix to consider the
frequency-dependent standard deviation and the correlation between
different input data points [39,44(a)]. The exact solution is given in
black.

of the continuation and gives higher spectral weight around the
correct position of the high-energy peak. The high-energy peak
is not captured using Gaussian noise data or QMC data for the
Padé method. It is not trivial to treat covariances within the
Padé method. Including the covariance matrix in a way similar
to what is done for the other methods leads to an impracticable
nonlinear system of equations, at least in Beach’s formulation
[41,47]. Therefore we have not considered it for this analysis.
Nevertheless, we plan to address this issue in more detail in
future works.

The previous analysis shows that considering a more
realistic noise directly from QMC simulations does not lead to
different conclusions than working with a model Gaussian
noise. The positive and negative features of the different
methods for analytical continuation seem not to depend on
the different inputs, although the obtained spectra show some

differences, as expected. Overall, this more realistic test case
reinforces the conclusions drawn in the previous sections.

E. Computational time

As a final note, we want to make a brief comment
about the computational effort required to perform the ana-
lytical continuation of these functions. Momentum-resolved
calculations, such as the Lindhard function spectra for the
tight-binding model shown above, typically involve linear
dimensions of approximately 100 sites. Even considering a
minimal effort, analytical continuation is required on a path
through the high-symmetry points of the lattice, involving
about a hundred analytical continuations. Additionally, the
analytical continuation should be done several times with
different continuation parameters to ascertain its stability.
Therefore, the computational time required to perform a single
continuation becomes a factor of practical importance.

It is not simple to compare the fundamental computational
effort required by the five methods investigated here because
the employed codes have different degrees of optimization
and parallelization. Nevertheless, we can still provide some
estimates. The fastest methods are undoubtedly NNLS and
NNT, which require less than a second per continuation.
The MEM and Padé are slower and usually require from
several to a hundred seconds per continuation, depending
on the parameters used. Mishchenko’s method is by far the
most demanding method among those tested here. To obtain
properly converged results one has to perform the stochastic
sampling for a time ranging from a few hours to weeks.
The effective time can be significantly reduced by using a
parallelized code, like we do in the present work. However,
parallelization is easy to implement only over global updates
in the Monte Carlo chain, while local updates still have to
be handled serially. This limits the scalability of the code,
and therefore the reduction in computational time, to about
a hundred CPUs. Even in this case, we must notice that it
is not always possible to dedicate such a large number of
resources to the analytical continuation problem. This sets
a limit on the applicability of Mishchenko’s method in the
current research. We are currently exploring an alternative
formulation of Mishchenko’s method based on a graphical
processing unit (GPU) [52].

VI. CONCLUSIONS

We have presented results for the analytical continuation of
bosonic functions using five different methods and four realis-
tic test cases, corresponding to different scenarios of physical
relevance for strongly correlated systems. An overview of the
major features emphasized in the previous section is given
in Table I. The first conclusion of our work is that, at the
moment, for low input accuracy, none of the existing methods
is good enough to be able to continue all different types of
two-particle quantities from the Matsubara frequencies to real
energies. Nevertheless, a combination of several methods can
give enough information to reconstruct the physical picture
behind the analytical continuation problem. Table I can offer
useful guidelines to perform this type of analysis.
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TABLE I. Summary of the test performance.

σ Padé NNLS NNT MEM Mishchenko

Two very close poles 10−2 One peak, Broadened, Broadened, One peak, Broadened,
position wrong positions wrong positions wrong position wrong positions wrong

10−4 Excellent Good Good Good Good

Two close poles 8 × 10−3 One peak Very good Broadened, position wrong One peak Excellent
QMC Good Broadened Broadened Good

Two separated 10−2 One peak Good Good, broadened One peak Good, broadened
poles 10−4 Excellent Good Good Good, broadened Excellent

One sharp 10−3 Good Spurious features Broadened Broadened Good
feature 10−10 Excellent Spurious features Broadened, unstable Broadened Good

Broad, flat feature 10−3 Too sharp Two sharp peaks Good, Good, Good
unphysical minima unphysical minima

10−10 Good Spurious features Good Good Good

Two peaks in a 10−3 One peak Wrong positions One broad peak One broad peak Good, broadened
broad plateau plus additional peak

10−10 Additional peak Spurious peaks Spurious peaks Good, broadened Good, broadened

One peak in 10−3 One peak Spurious peaks Plateau Broad peak Chopped triangle
broad plateau plus plateau

10−10 Good Spurious peaks Good Good Good

Conversely, for high-precision input data, our results are
encouraging. Among all methods, the Padé averaging scheme
[47] is the one that performs best when the numerical noise
is absent. For complicated spectra, such as that of the band
gap model, even Padé cannot completely resolve the spectrum
for σ = 10−10, and it is indeed not even clear that it performs
better than Mishchenko’s method due to small violations of
the symmetry characterizing the exact spectrum. In general,
Mishchenko’s method seems to be the most robust approach
across various levels of noise. As a matter of fact, its results do
not seem very affected by the different noise levels for all the
tested functions. The accuracy of Mishchenko’s method is also
good, although care is needed when choosing the numerical pa-
rameters of the stochastic sampling. For optimal parameter val-
ues, the accuracy of Mishchenko’s method is definitely good.

Overall, a single sharp peak close to zero energy is resolved
by all methods even for a relatively high noise. The MEM,
NNT method, and Mishchenko’s method are able to resolve
broad features. However, these methods also have the tendency
to smear several pronounced peaks, sometimes into a single
broad feature. In Mishchenko’s method, this problem is related
to the number of local updates performed in the sampling. As
shown in Appendix B, increasing the number of local updates
leads to more peaked spectra, but those are not always in better
agreement with the exact results. In general, the tendency to
smear pronounced features into broad peaks and, at the same
time, to create spurious peaks makes it difficult to know if a
calculated broad spectral feature really is a broad feature or
a combination of several peaks. As an example of this, the
MEM continuation of the two-pole function for E2 = 1.2 at
σ = 10−4 (Fig. 2) looks similar to the MEM continuation of
the two-dimensional doped tight-binding model at the M point
for the same noise level (Fig. 5), although the exact functions
are very different.

The very broad modes that appear, e.g., around the M point
of the doped two-dimensional tight binding model, are difficult

to resolve correctly. Functions with two distinct poles, on the
other hand, are much easier. NNLS, in particular, performs
well for the two-pole model, whereas it performs very poorly
for more complicated spectra. This shows the importance of
varied, realistic test functions for assessing the potential of
each continuation method.

As the results for the Hubbard dimer show, considering
realistic data directly from QMC calculations does not seem to
affect the previous conclusions. NNT and MEM give smeared-
out features, but NNLS and Mishchenko’s method perform
very well. The Padé method captures only the low-energy
peak, and this is not surprising, considering the high level
of noise. In general, for both types of noise investigated, the
performance of the analytical continuation methods is in line
with that obtained for the two-pole model. This is also expected
since the exact spectra of the Hubbard dimer and the two-
pole model are rather similar. Including a correction for the
covariance between the input data from QMC does not change
these conclusions but does lead to an improvement of the
quality of the analytical continuation.

Finally, we compare our work to previous studies. Two
previous works [12,27] found that Padé generally performs
poorer than the other methods. Huang et al. [12] found
that MEM outperforms Padé for a spectrum generated from
a combination of two Gaussian distributions. In particular,
their results show that the Padé method sometimes merges
two peaks, just as we have seen in the two-pole spectra.
In Ref. [27], the authors test several methods of analytical
continuation on the optical conductivity for relatively high
noise levels (σ = 10−2 to 10−3). They find that all methods
(Padé, singular-value decomposition, sampling, and MEM)
perform similarly but that the Padé method generally gives
slightly less accurate results and sometimes finds unphysical
continuations. However, in both studies, the averaging scheme
for Padé [47] was not used. This averaging scheme solves the
problem of unphysical continuations and should improve the
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overall performance of the Padé method. We would also like to
stress two more fundamental conclusions of this study. First,
we want to emphasize the importance of varied, realistic test
functions in the assessment of continuation algorithms. The
dependence of the performance of each method on the type
of function investigated is a clear indication that no analysis
can be meaningful without exploring a proper number of test
cases. Second, we want to stress that our findings fully support
what was already claimed in Ref. [27], namely, although no
universal tool is currently available, better insight into the
continuation problem can be obtained by using a combined
approach of several methods.
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APPENDIX A: IMPOSING MIRROR SYMMETRY

The MEM, the NNT, and the NNLS method conserve
the symmetry of the spectra ρ(E) = −ρ(−E) since they use
the symmetric definition of the Hilbert transform, Eq. (2).
The Padé method does not have such symmetry imposed.
For fermionic one-particle Green’s functions and self-energies
with zero imaginary part at the origin of the complex plane, it
is shown [47] that the continuation improves by taking a few
negative Matsubara frequencies into account to impose the
mirror symmetry. Such a procedure, with a single negative
Matsubara frequency, has also been used for the optical
conductivity [27]. We have tried the same scheme for the
Padé continuation of the bosonic functions in this paper,
but in most cases imposing mirror symmetry actually gave
a worse continuation. In particular, when the exact spectrum
has a broad, rather flat spectrum, such as at the M point of
the doped tight-binding model, imposing the symmetry can
lead to spurious sharp features. Broad modes in the spectrum
are related to branch cuts in the complex function χ (z). The
Padé approximant uses a finite number of poles to simulate
χ (z). When the mirror symmetry is imposed on the Padé
approximant, the poles move closer to the real axis, which
results in sharper spectral features. Hence broad features are
harder to accurately simulate by imposing mirror symmetry.

APPENDIX B: UPDATES FOR MISHCHENKO’S
SAMPLING METHOD

The stochastic sampling method by Mishchenko et al. [43]
consists of many iterative steps. In every step, the configuration

FIG. 10. The dependence on the number of iterations (see legend)
performed with the Mishchenko method. (a) The two-pole function
in the presence of input noise with σ = 10−4. (b) The band gap model
at the k point 1

2 (� → X) for two different noise levels of σ = 10−3

(left) and σ = 10−4 (right). (c) The doped tight-binding model at the
M point and Matsubara noise level σ = 10−4.

of the rectangles is altered. In the main text, results with 15 000
iterations are presented, which is a suitable setup to obtain a
reasonable output in a decent computational time (30 CPU
hours using 128 CPUs). However, it is important to check
how the spectral functions evolve when varying the number of
local updates. In Fig. 10 we increase that number by a factor
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FIG. 11. Integrated real-axis error for the two-pole model as
a function of the highest Matsubara point index nmax used in
Mishchenko’s method. Different numbers of local iterations are
investigated and are indicated by the legend. Top: a1 = 0.1, a2 =
0.335663, E1 = 0.7, and E2 = 1.2; bottom: a1 = 0.1, a2 = 0.7,
E1 = 0.7, and E2 = 2.5, as defined in Eq. (9). Matsubara noise level
σ = 10−4 is used.

of 4 several times and show the resulting spectral function.
For the two-pole model (see Fig. 2) it is clear that increasing

the number of iterations improves the resulting spectrum
[see Fig. 10(a)]. However, for a more complicated spectrum,
such as the band gap model at the k point 1

2 (� → X) [see
Fig. 7(a)], increasing the number of iterations does not lead to
an improvement [see Fig. 10(b)]. This issue is particularly
pronounced when the input noise is big. The tendency to
produce too sharp features resembles the overfitting occurring
in the NNLS method. For the doped tight-binding model at
the M point (see the left panel in Fig. 5) the spectra converge
already for 15 000 iterations [see Fig. 10(c)]. In summary,
the number of iterations giving the best spectral function
is highly dependent on the function under investigation and
the noise level. With an increasing number of iterations, the
computational cost increases as well as the risk of overfitting
to the input Matsubara data. Hence care should be taken
when choosing the number of iterations. A possible solution
could be to stop the local updates when the deviation of the
backwards-transformed output data from the input data has a
magnitude which is comparable to the standard deviation of
the input data.

Further, it is interesting to repeat the analysis of the accuracy
of the continuation with respect to the number of Matsubara
points (Fig. 3) while varying the number of local updates.
These results are illustrated in Fig. 11. While increasing
the number of local updates leads to a better continuation,
the general trend reported in Fig. 11 is very similar to
Fig. 3. Increasing the number of Matsubara frequencies, the
quality of the continuation reaches saturation very quickly
and with a threshold that does not seem to depend on the
number of local updates. A posteriori, this shows that the
approach used in Fig. 3, i.e., keeping fixed the number of local
updates while increasing the number of Matsubara points, is
justifiable.
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[47] J. Schött, I. L. M. Locht, E. Lundin, O. Grånäs, O. Eriksson, and
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