176 research outputs found

    Brain activity changes with emotional words in different stages of psychosis

    Full text link
    BackgroundTo date, a large number of functional magnetic resonance imaging (fMRI) studies have been conducted on psychosis. However, little is known about changes in brain functioning in psychotic patients using an emotional auditory paradigm at different stages of the disease. Such knowledge is important for advancing our understanding of the disorder and thus creating more targeted interventions. This study aimed to investigate whether individuals with first-episode psychosis (FEP) and chronic schizophrenia show abnormal brain responses to emotional auditory processing and to compare the responses between FEP and chronic schizophrenia. MethodsPatients with FEP (n = 31) or chronic schizophrenia (n = 23) and healthy controls (HCs, n = 31) underwent an fMRI scan while presented with both emotional and nonemotional words. ResultsUsing HC as a reference, patients with FEP showed decreased right temporal activation, while patients with chronic schizophrenia showed increased bilateral temporal activation. When comparing the patient groups, individuals with FEP showed lower frontal lobe activation. ConclusionTo the best of our knowledge, this is the first study with an emotional auditory paradigm used in psychotic patients at different stages of the disease. Our results suggested that the temporal lobe might be a key issue in the physiopathology of psychosis, although abnormal activation could also be derived from a connectivity problem. There is lower activation in the early stage and evolution to greater activation when patients become chronic. This study highlights the relevance of using emotional paradigms to better understand brain activation at different stages of psychosis

    Natural Deep Eutectic Solvents Based on Choline Chloride and Phenolic Compounds as Efficient Bioadhesives and Corrosion Protectors

    Get PDF
    This work was supported by Marie Sklodowska-Curie Research and Innovation Staff Exchanges (RISE) under Grant Agreement No. 823989 “IONBIKE”. The financial supports received from CONICET and ANPCyT (Argentina) are also gratefully acknowledged. ). Publisher Copyright: © 2022 American Chemical Society. All rights reserved.Natural deep eutectics solvents (NADES), owing to their high solvation capacity and nontoxicity, are actively being sought for many technological applications. Herein, we report a series of novel NADES based on choline chloride and plant-derived polyphenols. Most of the obtained phenolic NADES have a wide liquid range and high thermal stability above 150 °C. Among them, small-sized polyphenols, like pyrogallol, vanillyl alcohol, or gentisic acid, lead to low-viscosity liquids with ionic conductivities in the order of 10-3S cm-1at room temperature. Interestingly, polyphenols possess valuable properties as therapeutic agents, antioxidants, adhesives, or redox-active compounds, among others. Thus, we evaluated the potential of these novel NADES for two applications: bioadhesives and corrosion protection. The mixture of choline chloride-vanillyl alcohol (2:3 mol ratio) and gelatin resulted in a highly adhesive viscoelastic liquid (adhesive stress ≈ 135 kPa), affording shear thinning behavior. Furthermore, choline chloride-tannic acid (20:1) showed an extraordinary ability to coordinate iron ions, reaching excellent corrosion inhibitive efficiencies in mild steel protection.publishersversionpublishe

    Study of the break-up channel in 11Li+208Pb collisions at energies around the Coulomb barrier

    Get PDF
    We present a study of 11Li+208 Pb collisions at energies around the Coulomb barrier (Elab = 24.3 and 29.8 MeV), measured at the post-accelerated beam facility, ISAC II, at TRIUMF (Vancouver, Canada). A remarkably large yield of 9Li has been observed, a result that is attributed to the weak binding of the 11Li nucleus. The angular distribution of this 9Li yield, relative to the elastic one, has been analysed in terms of first-order semiclassical calculations as well as four-body and three-body Continuum-Discretized Coupled-Channels (CDCC) calculations, based on a three-body and di-neutron model of the 11Li nucleus, respectively. The calculations reproduce well the trend of the data and support the existence of a large concentration of B (E1) strength at very low excitation energies. The connection of this large B (E1) with a possible low-lying dipole resonance is discussed

    Elastic scattering of 9Li on 208Pb at energies around the Coulomb barrier

    Get PDF
    We have studied the dynamical effects of the halo structure of 11Li on the scattering on heavy targets at energies around the Coulomb barrier. This experiment was performed at ISAC-II at TRIUMF with a world record in production of the post-accelerated 11Li beam. As part of this study we report here on the first measurement of the elastic cross section of the core nucleus, i.e. 9Li on 208Pb, at energies around the Coulomb barrier. A preliminary optical model analysis has been performed in order to extract a global optical potential to describe the measured angular distributions

    Panorama sanitario del cultivo de la soja en el noroeste argentino durante la campaña 2021/2022

    Get PDF
    El cultivo de la soja [Glycine max (L.) Merr.] se encuentra ampliamente desarrollado en el noroeste de la República Argentina (NOA) y es de gran interés económico y social por su extensión e importancia en la actividad agroindustrial. Es por ello que realizar una correcta prospección y diagnóstico de las enfermedades que lo afectan resulta fundamental a fin de evitar o reducir las pérdidas de rendimiento ocasionadas por el ataque de diversos fitopatógenos. Debido a esto todos los años personal del Laboratorio de la Sección Fitopatología de la Estación Experimental Agroindustrial Obispo Colombres (EEAOC) realiza anualmente la prospección de enfermedades que afectan al cultivo en la zona sojera del NOA con el fin de identificar las patologías presentes y así evaluar las mejores estrategias de control de las mismas.Fil: Claps, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Bleckwedel, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Aguaysol, N. C.. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Scalora, Franco. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Durán González, María A.. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Gramajo, Fátima María. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Medina, Matías E.. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Nieva, Raúl E.. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Paz, Jorge L.. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: González, Victoria. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Ploper, Leonardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Reznikov, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentin

    Panorama sanitario del cultivo de la soja en el noroeste argentino durante la campaña 2021/2022

    Get PDF
    El cultivo de la soja [Glycine max (L.) Merr.] se encuentra ampliamente desarrollado en el noroeste de la República Argentina (NOA) y es de gran interés económico y social por su extensión e importancia en la actividad agroindustrial. Es por ello que realizar una correcta prospección y diagnóstico de las enfermedades que lo afectan resulta fundamental a fin de evitar o reducir las pérdidas de rendimiento ocasionadas por el ataque de diversos fitopatógenos. Debido a esto todos los años personal del Laboratorio de la Sección Fitopatología de la Estación Experimental Agroindustrial Obispo Colombres (EEAOC) realiza anualmente la prospección de enfermedades que afectan al cultivo en la zona sojera del NOA con el fin de identificar las patologías presentes y así evaluar las mejores estrategias de control de las mismas.Fil: Claps, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Bleckwedel, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Aguaysol, N. C.. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Scalora, Franco. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Durán González, María A.. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Gramajo, Fátima María. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Medina, Matías E.. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Nieva, Raúl E.. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Paz, Jorge L.. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: González, Victoria. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Ploper, Leonardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Reznikov, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentin

    Restoring cellular magnesium balance through Cyclin M4 protects against acetaminophen-induced liver damage

    Get PDF
    Acetaminophen overdose is one of the leading causes of acute liver failure and liver transplantation in the Western world. Magnesium is essential in several cellular processess. The Cyclin M family is involved in magnesium transport across cell membranes. Herein, we identify that among all magnesium transporters, only Cyclin M4 expression is upregulated in the liver of patients with acetaminophen overdose, with disturbances in magnesium serum levels. In the liver, acetaminophen interferes with the mitochondrial magnesium reservoir via Cyclin M4, affecting ATP production and reactive oxygen species generation, further boosting endoplasmic reticulum stress. Importantly, Cyclin M4 mutant T495I, which impairs magnesium flux, shows no effect. Finally, an accumulation of Cyclin M4 in endoplasmic reticulum is shown under hepatoxicity. Based on our studies in mice, silencing hepatic Cyclin M4 within the window of 6 to 24 h following acetaminophen overdose ingestion may represent a therapeutic target for acetaminophen overdose induced liver injury

    Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors

    Get PDF
    [EN] Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8'-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA beta-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited Delta NHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.This work was supported by Ministerio de Economia y Competitividad (MINECO), Fondo Europeo de Desarrollo Regional (FEDER) and Universitat Jaume I through grants No. AGL201676574-R, UJI-B2016-23/UJI-B2016-24 to A.G-C. and V.A. and MINECO, FEDER and Consejo Superior de Investigaciones Cientificas (CSIC) through grant BIO2014-52537-R to P.L.R. S.I.Z. and M.M. were supported by predoctoral grants from Universitat Jaume I and Generalitat Valenciana, respectively. M.G.G. was recipient of a "JAE-DOC" contract from the CSIC. Mass spectrometry analyses were performed at the central facilities (Servei Central d'Instrumentacio Cientifica, SCIC) of Universitat Jaume I.Arbona, V.; Zandalinas, SI.; Manzi, M.; González Guzmán, M.; Rodríguez Egea, PL.; Gómez-Cadenas, A. (2017). Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors. Plant Molecular Biology. 93(6):623-640. https://doi.org/10.1007/s11103-017-0587-7S623640936Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54:201–212Agustí J, Merelo P, Cercós M, Tadeo FR, Talón M (2008) Ethylene-induced differential gene expression during abscission of citrus leaves. J Exp Bot 59:2717–2733. doi: 10.1093/jxb/ern138Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio G, Rodriguez PL (2012) Selective inhibition of clade a phosphatases type 2 C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol 158:970–980. doi: 10.1104/pp.111.188623Antoni R, Gonzalez-Guzman M, Rodriguez L, Peirats-Llobet M, Pizzio G, Fernandez M, De Winne N, De Jaeger G, Dietrich D, Bennett MJ, Rodriguez PL (2013) PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161:491–931. doi: 10.1104/pp.112.208678Arbona V, Gómez-Cadenas A (2008) Hormonal modulation of citrus responses to flooding. J Plant Growth Regul 27:241–250. doi: 10.1007/s00344-008-9051-xArbona V, López-climent MF, Pérez-Clemente RM, Gómez-cadenas A (2009) Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environ Exp Bot 66:135–142. doi: 10.1016/j.envexpbot.2008.12.011Argamasilla R, Gómez-Cadenas A, Arbona V (2013) Metabolic and regulatory responses in citrus rootstocks in response to adverse environmental conditions. J Plant Growth Regul 33:169–180. doi: 10.1007/s00344-013-9359-zBaron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188–189:48–59. doi: 10.1016/j.plantsci.2012.03.001Benschop JJ, Millenaar FF, Smeets ME, Van Zanten M, Voesenek LACJ, Peeters AJM (2007) Abscisic acid antagonizes ethylene-induced hyponastic growth in Arabidopsis. Plant Physiol 143:1013–1023Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916. doi: 10.1105/tpc.112.098277De Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147:296–306. doi: 10.1111/j.1399-3054.2012.01659.xDupeux F, Santiago J, Betz K, Twycross J, Park S-Y, Rodriguez L, Gonzalez-Guzman M, Jensen MR, Krasnogor N, Blackledge M, Holdsworth M, Cutler SR, Rodriguez PL, Márquez JA (2011) A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J 30:4171–4184. doi: 10.1038/emboj.2011.294Finkelstein RR, Rock CD (2002) Abscisic Acid biosynthesis and response. Arabidopsis Book 1:e0058. doi: 10.1199/tab.0058Fuchs S, Tischer SV, Wunschel C, Christmann A, Grill E (2014) Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors. Proc Natl Acad Sci U S A 111:5741–5746. doi: 10.1073/pnas.1322085111Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427. doi: 10.1105/tpc.110.080325Gonzalez-Guzman M, Rodriguez L, Lorenzo-Orts L, Pons C, Sarrion-Perdigones A, Fernandez M a, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR, Albert A, Granell A, Rodriguez PL (2014) Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. J Exp Bot 65:1–14. doi: 10.1093/jxb/eru219González-Guzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodríguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846. doi: 10.1105/tpc.002477.developmentHsu F-C, Chou M-Y, Peng H-P, Chou S-J, Shih M-C (2011) Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS ONE 6:e28888. doi: 10.1371/journal.pone.0028888Krochko JE, Abrams GD, Loewen MK, Abrams SR, Cutler AJ (1998) (+)-Abscisic Acid 8-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 860:849–860. doi: 10.1104/pp.118.3.849Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108. doi: 10.1093/jxb/ers326Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60. doi: 10.1111/j.1365-3040.2011.02426.xLiu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406Mittal A, Gampala SSL, Ritchie GL, Payton P, Burke JJ, Rock CD (2014) Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol J 12:578–589. doi: 10.1111/pbi.12162Naika M, Shameer K, Mathew OK, Gowda R, Sowdhamini R (2013) STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol 54:e8. doi: 10.1093/pcp/pcs185Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185. doi: 10.1146/annurev.arplant.56.032604.144046Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107. doi: 10.1104/pp.106.079475.1Okamoto M, Peterson FC, Defries A, Park S-Y, Endo A, Nambara E, Volkman BF, Cutler SR (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci USA 110:12132–12137. doi: 10.1073/pnas.1305919110Priest DM, Ambrose SJ, Vaistij FE, Elias L, Higgins GS, Ross ARS, Abrams SR, Bowles DJ (2006) Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J 46:492–502. doi: 10.1111/j.1365-313X.2006.02701.xRitchie M, Phipson B, Wu D, Hu Y, Law C, Shi W, Smyth G (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47Rodríguez-Gamir J, Ancillo G, González-Mas MC, Primo-Millo E, Iglesias DJ, Forner-Giner MA (2011) Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiol Biochem 49:636–645. doi: 10.1016/j.plaphy.2011.03.003Romero P, Lafuente MT, Rodrigo MJ (2012a) The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. J Exp Bot 63:4931–4945Romero P, Rodrigo MJ, Alférez F, Ballester A-R, González-Candelas L, Zacarías L, Lafuente MT (2012b) Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant. J Exp Bot 63:2753–2767. doi: 10.1093/jxb/err461Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S-I, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M (2007) Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8′-hydroxylase in rice. Plant Cell Physiol 48:287–298. doi: 10.1093/pcp/pcm003Santiago J, Dupeux F, Betz K, Antoni R, Gonzalez-Guzman M, Rodriguez L, Márquez JA, Rodriguez PL (2012) Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Sci 182:3–11. doi: 10.1016/j.plantsci.2010.11.014Schroeder JI, Nambara E (2006) A quick release mechanism for abscisic acid. Cell 126:1023–1025. doi: 10.1016/j.cell.2006.09.001Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62:2615–2632. doi: 10.1093/jxb/erq446Shimamura S, Yoshioka T, Yamamoto R, Hiraga S, Nakamura T, Shimada S, Komatsu S (2014) Role of abscisic acid in flood-induced secondary aerenchyma formation in soybean (Glycine max) hypocotyls. Plant Prod Sci 17:131–137. doi: 10.1626/pps.17.131Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E (2010) Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J 61:25–35. doi: 10.1111/j.1365-313X.2009.04025.xTanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J 70:599–613. doi: 10.1111/j.1365-313X.2012.04901.xValdés AE, Övernäs E, Johansson H, Rada-Iglesias A, Engström P (2012) The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Mol Biol 80:405–418. doi: 10.1007/s11103-012-9956-4Weng J-K, Ye M, Noel JP (2016) Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166:881–893Yamaguchi M, Sharp RE (2010) Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. Plant Cell Environ 33:590–603. doi: 10.1111/j.1365-3040.2009.02064.xYoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21C:133–139. doi: 10.1016/j.pbi.2014.07.009Zhao Y, Xing L, Wang X, Hou Y-H, Gao J, Wang P, Duan C-G, Zhu X, Zhu J-K (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7:ra53Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683. doi: 10.1007/s11103-008-9298-

    Un examen actualizado de la percepción de las barreras para la implementación de la farmacogenómica y la utilidad de los pares fármaco/gen en América Latina y el Caribe

    Get PDF
    La farmacogenómica (PGx) se considera un campo emergente en los países en desarrollo. La investigación sobre PGx en la región de América Latina y el Caribe (ALC) sigue siendo escasa, con información limitada en algunas poblaciones. Por lo tanto, las extrapolaciones son complicadas, especialmente en poblaciones mixtas. En este trabajo, revisamos y analizamos el conocimiento farmacogenómico entre la comunidad científica y clínica de ALC y examinamos las barreras para la aplicación clínica. Realizamos una búsqueda de publicaciones y ensayos clínicos en este campo en todo el mundo y evaluamos la contribución de ALC. A continuación, realizamos una encuesta regional estructurada que evaluó una lista de 14 barreras potenciales para la aplicación clínica de biomarcadores en función de su importancia. Además, se analizó una lista emparejada de 54 genes/fármacos para determinar una asociación entre los biomarcadores y la respuesta a la medicina genómica. Esta encuesta se comparó con una encuesta anterior realizada en 2014 para evaluar el progreso en la región. Los resultados de la búsqueda indicaron que los países de América Latina y el Caribe han contribuido con el 3,44% del total de publicaciones y el 2,45% de los ensayos clínicos relacionados con PGx en todo el mundo hasta el momento. Un total de 106 profesionales de 17 países respondieron a la encuesta. Se identificaron seis grandes grupos de obstáculos. A pesar de los continuos esfuerzos de la región en la última década, la principal barrera para la implementación de PGx en ALC sigue siendo la misma, la "necesidad de directrices, procesos y protocolos para la aplicación clínica de la farmacogenética/farmacogenómica". Las cuestiones de coste-eficacia se consideran factores críticos en la región. Los puntos relacionados con la reticencia de los clínicos son actualmente menos relevantes. Según los resultados de la encuesta, los pares gen/fármaco mejor clasificados (96%-99%) y percibidos como importantes fueron CYP2D6/tamoxifeno, CYP3A5/tacrolimus, CYP2D6/opioides, DPYD/fluoropirimidinas, TMPT/tiopurinas, CYP2D6/antidepresivos tricíclicos, CYP2C19/antidepresivos tricíclicos, NUDT15/tiopurinas, CYP2B6/efavirenz y CYP2C19/clopidogrel. En conclusión, aunque la contribución global de los países de ALC sigue siendo baja en el campo del PGx, se ha observado una mejora relevante en la región. La percepción de la utilidad de las pruebas PGx en la comunidad biomédica ha cambiado drásticamente, aumentando la concienciación entre los médicos, lo que sugiere un futuro prometedor en las aplicaciones clínicas de PGx en ALC.Pharmacogenomics (PGx) is considered an emergent field in developing countries. Research on PGx in the Latin American and the Caribbean (LAC) region remains scarce, with limited information in some populations. Thus, extrapolations are complicated, especially in mixed populations. In this paper, we reviewed and analyzed pharmacogenomic knowledge among the LAC scientific and clinical community and examined barriers to clinical application. We performed a search for publications and clinical trials in the field worldwide and evaluated the contribution of LAC. Next, we conducted a regional structured survey that evaluated a list of 14 potential barriers to the clinical implementation of biomarkers based on their importance. In addition, a paired list of 54 genes/drugs was analyzed to determine an association between biomarkers and response to genomic medicine. This survey was compared to a previous survey performed in 2014 to assess progress in the region. The search results indicated that Latin American and Caribbean countries have contributed 3.44% of the total publications and 2.45% of the PGx-related clinical trials worldwide thus far. A total of 106 professionals from 17 countries answered the survey. Six major groups of barriers were identified. Despite the region’s continuous efforts in the last decade, the primary barrier to PGx implementation in LAC remains the same, the “need for guidelines, processes, and protocols for the clinical application of pharmacogenetics/pharmacogenomics”. Cost-effectiveness issues are considered critical factors in the region. Items related to the reluctance of clinicians are currently less relevant. Based on the survey results, the highest ranked (96%–99%) gene/drug pairs perceived as important were CYP2D6/tamoxifen, CYP3A5/tacrolimus, CYP2D6/opioids, DPYD/fluoropyrimidines, TMPT/thiopurines, CYP2D6/tricyclic antidepressants, CYP2C19/tricyclic antidepressants, NUDT15/thiopurines, CYP2B6/efavirenz, and CYP2C19/clopidogrel. In conclusion, although the global contribution of LAC countries remains low in the PGx field, a relevant improvement has been observed in the region. The perception of the usefulness of PGx tests in biomedical community has drastically changed, raising awareness among physicians, which suggests a promising future in the clinical applications of PGx in LAC

    Database of spatial distribution of non indigenous species in Spanish marine waters

    Get PDF
    Research in marine Spanish waters are focused on several actions to achieve an effectively management on protected areas, with the active participation of the stakeholders and research as basic tools for decision-making. Among these actions, there is one about the knowledge and control on NIS. One of its objectives is the creation of NIS factsheets, which are going to be added to the National Marine Biodiversity Geographical System (GIS) providing complementary information about taxonomic classification, common names, taxonomic synonyms, species illustrations, identification morphological characters, habitat in the native and introduced regions, biological and ecological traits, GenBank DNA sequences, world distribution, first record and evolution in the introduced areas, likely pathways of introduction, effects in the habitats and interaction with native species, and potential management measures to apply. The database will also provide data for (1) the European online platforms, (2) the environmental assessment for the Descriptor 2 (D2-NIS) of the EU Marine Strategy Framework Directive (MSFD), as well as (3) supporting decisions made by stakeholders. It is the result of extensive collaboration among scientist, manager’s and citizen science in the Spanish North-Atlantic, South-Atlantic, Gibraltar Strait-Alboran, Levantine-Balearic and Canary Islands marine divisions, providing an updated overview of the spatial distribution of relevant extended and invasive NIS of recent and established NIS introduced by maritime transport and aquaculture pathways, as well as on cryptogenic or native species in expansion due to the climatic water warming trend
    corecore