1,092 research outputs found

    The binding of CO2 to human hemoglobin.

    Get PDF
    CO2-dissociation curves of concentrated human deoxy- and carbonmonoxyhemoglobin at 37 degrees, pH 7.6 to 7.0, PCO2 equal to 10 to 160 mm Hg, have been obtained by a rapid mixing and ion exchange technique. The CO2-dissociation curves for deoxyhemogloblin can only be fitted by assuming two classes of binding sites for carbon dioxide. The simplest way to account for the experimental data is to assume that the alpha-amino groups of the alpha and beta chains react with carbon dioxide with affinities that differ by at least a factor of 3. No difference in reactivity with CO2 was found among the four terminal alpha-amino groups of carbonmonoxyhemoglobin

    Recent advances in the chemistry of metal carbamates

    Get PDF
    Following a related review dating back to 2003, the present review discusses in detail the various synthetic, structural and reactivity aspects of metal species containing one or more carbamato ligands, representing a large family of compounds across all the periodic table. A preliminary overview is provided on the reactivity of carbon dioxide with amines, and emphasis is given to recent findings concerning applications in various fields

    (Poly)phenolic content and profile and antioxidant capacity of whole-grain cookies are better estimated by simulated digestion than chemical extraction

    Get PDF
    It is widely recognized that the biological effects of phytochemicals cannot be attributed to the native compounds present in foods but rather to their metabolites endogenously released after intake. Bioavailability depends on bioaccessibility, which is the amount of the food constituent that is released from the matrix in the gastrointestinal tract. The use of chemical extraction to evaluate the content and profile of phytochemicals does not mirror the physiological situation in vivo, and their bioaccessibility should be considered while assessing their nutritional significance in human health. The current study was designed to compare the (poly)phenolic profile and content and antioxidant capacity of whole-grain (WG) cookies using chemical extraction and a more physiological approach based on simulated digestion. Three types of organic WG cookies (made with durum, Italian khorasan, or KAMUT\uae khorasan wheat) were considered, either fermented by Saccharomyces Cerevisiae or sourdough. Although the flour type and the fermentation process influenced the release of phytochemicals from the cookie matrix, in almost all samples, the simulated digestion appeared the most efficient procedure. Our results indicate that the use of chemical extraction for evaluation of the phytochemicals content and antioxidant capacity of food could lead to underestimation and underline the need for more physiological extraction methods

    Asymmetric saccade reaction times to smooth pursuit

    Get PDF
    Before initiating a saccade to a moving target, the brain must take into account the target’s eccentricity as well as its movement direction and speed. We tested how the kinematic characteristics of the target influence the time course of this oculomotor response. Participants performed a step-ramp task in which the target object stepped from a central to an eccentric position and moved at constant velocity either to the fixation position (foveopetal) or further to the periphery (foveofugal). The step size and target speed were varied. Of particular interest were trials that exhibited an initial saccade prior to a smooth pursuit eye movement. Measured saccade reaction times were longer in the foveopetal than in the foveofugal condition. In the foveopetal (but not the foveofugal) condition, the occurrence of an initial saccade, its reaction time as well as the strength of the pre-saccadic pursuit response depended on both the target’s speed and the step size. A common explanation for these results may be found in the neural mechanisms that select between oculomotor response alternatives, i.e., a saccadic or smooth response

    Diiron bis-cyclopentadienyl complexes as transfer hydrogenation catalysts: The key role of the bridging aminocarbyne ligand

    Get PDF
    The catalytic activity of a series of diiron complexes based on the {Fe2Cp2(CO)(x)} core (x = 2-3) and containing a bridging aminocarbyne ligand was screened in transfer hydrogenation reaction of cyclohexanone from isopropanol. The series includes cationic tricarbonyl complexes, [1a-d]CF3SO3, and neutral derivatives obtained by substitution of one carbonyl with hydride (2a-c), cyanide (3a-d) or chloride (4a) ligands. The novel compounds 2a-b, 3a-b and 4a were characterized by analytical and spectroscopic techniques, and the single crystal X-ray structure of one isomer of 4a was determined. In general, diiron complexes exhibited a moderate activity in combination with potassium hydroxide; [Fe2Cp2(CN)(CO)(mu-CO){mu-CN (Me)(4-C6H4OMe)}], 3a, emerged as the best catalyst, and the study of its activity was extended to a range of other ketones. DFT calculations suggest an unusual carbyne-centred mechanism, and the better performance displayed by 3a is ascribable to the stabilizing effect provided by the cyanide co-ligand, which is experimentally supported by IR analyses

    Adding Diversity to Diiron Aminocarbyne Complexes with Amine Ligands

    Get PDF
    The reactions of the diiron aminocarbyne complexes [Fe2Cp2(NCMe)(CO)(mu-CO){mu-CN(Me)(R)}]CF3SO3 (R = Me, 1a(NCMe); R = Cy, 1b(NCMe)), freshly prepared from the tricarbonyl precursors 1a-b, with primary amines containing an additional function (i.e., alcohol or ether) proceeded with the replacement of the labile acetonitrile ligand and formation of [Fe2Cp2(NH2CH2CH2OR')(CO)(mu-CO){mu-CN(Me)(R)}]CF3SO3 (R = Me, R' = H, 2a; R = Cy, R' = H, 2b; R = Cy, R' = Me, 2c) in 81-95% yields. The diiron-oxazolidinone conjugate [Fe2Cp2(NH2OX)(CO)(mu-CO){mu-CN(Me)(2)}]CF3SO3, 3, was prepared from 1a, 3-(2-aminoethyl)-5-phenyloxazolidin-2-one (NH2OX) and Me3NO, and finally isolated in 96% yield. In contrast, the one pot reactions of 1a-b with NHEt2 in the presence of Me3NO gave the unstable [Fe2Cp2(NHEt2)(CO)(mu-CO){mu-CN(Me)(R)}]CF3SO3 (R = Me, 4a; R = Cy, 4b) as unclean products. All diiron complexes were characterized by analytical and spectroscopic techniques; moreover, the behavior of 2a-c and 3 in aqueous media was ascertained

    Matching optical flow to motor speed in virtual reality while running on a treadmill

    Get PDF
    We investigated how visual and kinaesthetic/efferent information is integrated for speed perception in running. Twelve moderately trained to trained subjects ran on a treadmill at three different speeds (8, 10, 12 km/h) in front of a moving virtual scene. They were asked to match the visual speed of the scene to their running speed–i.e., treadmill’s speed. For each trial, participants indicated whether the scene was moving slower or faster than they were running. Visual speed was adjusted according to their response using a staircase until the Point of Subjective Equality (PSE) was reached, i.e., until visual and running speed were perceived as equivalent. For all three running speeds, participants systematically underestimated the visual speed relative to their actual running speed. Indeed, the speed of the visual scene had to exceed the actual running speed in order to be perceived as equivalent to the treadmill speed. The underestimation of visual speed was speed-dependent, and percentage of underestimation relative to running speed ranged from 15% at 8km/h to 31% at 12km/h. We suggest that this fact should be taken into consideration to improve the design of attractive treadmill-mediated virtual environments enhancing engagement into physical activity for healthier lifestyles and disease prevention and care

    Potent Antioxidant and Anti-Tyrosinase Activity of Butein and Homobutein Probed by Molecular Kinetic and Mechanistic Studies †

    Get PDF
    Butein (BU) and homobutein (HB) are bioactive polyhydroxylated chalcones widespread in dietary plants, whose antioxidant properties require mechanistic definition. They were investigated by inhibited autoxidation kinetic studies of methyl linoleate in TritonTM X-100 micelles at pH 7.4, 37 °C. Butein had kinh = (3.0 ± 0.9) × 104 M−1s−1 showing a chain-breaking mechanism with higher antioxidant activity than reference α-tocopherol (kinh = (2.2 ± 0.6) × 104 M−1s−1), particularly concerning the stoichiometry or peroxyl radical trapping n = 3.7 ± 1.1 vs. 2.0 for tocopherol. Homobutein had kinh = (2.8 ± 0.9) × 103 M−1s−1, pairing the relative BDEOH measured by radical equilibration EPR as 78.4 ± 0.2 kcal/mol for BU and estimated as 82.6 kcal/mol for HB. The inhibition of mushroom tyrosinase (mTYR) by HB and BU was also investigated. BU gives a reversible uncompetitive inhibition of monophenolase reaction with KI′ = 9.95 ± 2.69 μM and mixed-type diphenolase inhibition with KI = 3.30 ± 0.75 μM and KI′ = 18.75 ± 5.15 μM, while HB was nearly competitive toward both mono- and diphenolase with respective KI of 2.76 ± 0.70 μM and 2.50 ± 1.56 μM. IC50 values (monophenolase/diphenolase at 1 mM substrate) were 10.88 ± 2.19 μM/15.20 ± 1.25 μM, 14.78 ± 1.05 μM/12.36 ± 2.00 μM, and 33.14 ± 5.03 μM/18.27 ± 3.42 μM, respectively, for BU, HB, and reference kojic acid. Molecular docking studies confirmed the mechanism. Results indicate very potent antioxidant activity for BU and potent anti-tyrosinase activity for both chalcones, which is discussed in relation to bioactivity toward protection from skin disorders and food oxidative spoilage
    • …
    corecore