1,414 research outputs found

    Internal Flows and Particle Transport Inside Picoliter Droplets of Binary Solvent Mixtures

    Get PDF
    The flows in evaporating droplets of binary mixtures are much more complicated than single solvent systems. Solutal Marangoni flows are generated due to differential evaporation of components. High-speed imaging techniques are used to visualize how internal flows transport particles to build up the end deposit. Circulatory flow along streamlines develops inside droplets at the contact line or central region, depending on the direction of the Marangoni flow. Re-circulation of particles can reduce the build up of a ring stain. Additionally, particles migrate across streamlines to collect at the droplet center independent of where the circulating regions occur. Potential mechanisms for particle migration are discussed, including chemophoresis, thermophoresis and shear-induced migration

    Collapse-and-revival dynamics of strongly laser-driven electrons

    Full text link
    The relativistic quantum dynamics of an electron in an intense single-mode quantized electromagnetic field is investigated with special emphasis on the spin degree of freedom. In addition to fast spin oscillations at the laser frequency, a second time scale is identified due to the intensity dependent emissions and absorptions of field quanta. In analogy to the well-known phenomenon in atoms at moderate laser intensity, we put forward the conditions of collapses and revivals for the spin evolution in laser-driven electrons starting at feasible 101810^{18} W/cm2^2.Comment: 18 pages, 4 figure

    Extended morphometric analysis of neuronal cells with Minkowski valuations

    Full text link
    Minkowski valuations provide a systematic framework for quantifying different aspects of morphology. In this paper we apply vector- and tensor-valued Minkowski valuations to neuronal cells from the cat's retina in order to describe their morphological structure in a comprehensive way. We introduce the framework of Minkowski valuations, discuss their implementation for neuronal cells and show how they can discriminate between cells of different types.Comment: 14 pages, 18 postscript figure

    PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa

    Get PDF
    Proteins PRPF31, PRPF3 and PRPF8 (RP-PRPFs) are ubiquitously expressed components of the spliceosome, a macromolecular complex that processes nearly all pre-mRNAs. Although these spliceosomal proteins are conserved in eukaryotes and are essential for survival, heterozygous mutations in human RP-PRPF genes lead to retinitis pigmentosa, a hereditary disease restricted to the eye. Using cells from patients with 10 different mutations, we show that all clinically relevant RP-PRPF defects affect the stoichiometry of spliceosomal small nuclear RNAs (snRNAs), the protein composition of tri-small nuclear ribonucleoproteins and the kinetics of spliceosome assembly. These mutations cause inefficient splicing in vitro and affect constitutive splicing ex-vivo by impairing the removal of at least 9% of endogenously expressed introns. Alternative splicing choices are also affected when RP-PRPF defects are present. Furthermore, we show that the steady-state levels of snRNAs and processed pre-mRNAs are highest in the retina, indicating a particularly elevated splicing activity. Our results suggest a role for PRPFs defects in the etiology of PRPF-linked retinitis pigmentosa, which appears to be a truly systemic splicing disease. Although these mutations cause widespread and important splicing defects, they are likely tolerated by the majority of human tissues but are critical for retinal cell surviva

    Enhanced inverse bremsstrahlung heating rates in a strong laser field

    Full text link
    Test particle studies of electron scattering on ions, in an oscillatory electromagnetic field have shown that standard theoretical assumptions of small angle collisions and phase independent orbits are incorrect for electron trajectories with drift velocities smaller than quiver velocity amplitude. This leads to significant enhancement of the electron energy gain and the inverse bremsstrahlung heating rate in strong laser fields. Nonlinear processes such as Coulomb focusing and correlated collisions of electrons being brought back to the same ion by the oscillatory field are responsible for large angle, head-on scattering processes. The statistical importance of these trajectories has been examined for mono-energetic beam-like, Maxwellian and highly anisotropic electron distribution functions. A new scaling of the inverse bremsstrahlung heating rate with drift velocity and laser intensity is discussed.Comment: 12 pages, 12 figure

    Search for a correlation between telomere length and severity of retinitis pigmentosa due to the dominant rhodopsin Pro23His mutation

    Get PDF
    Purpose: Great variation exists in the age of onset of symptoms and the severity of disease at a given age in patients with retinitis pigmentosa ( RP). The final pathway for this disease may involve apoptotic photoreceptor cell death. Telomere length is associated with biologic aging, senescence, and apoptosis. We evaluated whether the length of telomeres in leukocytes correlated with the severity of RP in patients with the Pro23His rhodopsin mutation who have shown marked heterogeneity in disease severity. Methods: We evaluated 122 patients with the Pro23His rhodopsin mutation. The patients' retinal function was stratified according to their 30-Hz cone electroretinogram (ERG). The length of telomeres in leukocytes was measured by the quantitative real time polymerase chain reaction (qRT-PCR) method in the 15 patients with the highest age-adjusted 30Hz ERG amplitudes and in the 15 patients with the lowest amplitudes. Results: Mean leukocyte telomere length was similar in the 15 patients with the highest cone ERG amplitudes (median: 0.40 units; interquartile range 0.36-0.56) and the 15 patients with the lowest cone amplitudes (median: 0.41 units; inter quartile range 0.34-0.64; p=0.95). Conclusions: We found no evidence for an association between telomere length and the severity of RP as monitored by the cone ERG in patients with the Pro23His rhodopsin mutation

    High-frequency ultrasonic speckle velocimetry in sheared complex fluids

    Full text link
    High-frequency ultrasonic pulses at 36 MHz are used to measure velocity profiles in a complex fluid sheared in the Couette geometry. Our technique is based on time-domain cross-correlation of ultrasonic speckle signals backscattered by the moving medium. Post-processing of acoustic data allows us to record a velocity profile in 0.02--2 s with a spatial resolution of 40 ÎĽ\mum over 1 mm. After a careful calibration using a Newtonian suspension, the technique is applied to a sheared lyotropic lamellar phase seeded with polystyrene spheres of diameter 3--10 ÎĽ\mum. Time-averaged velocity profiles reveal the existence of inhomogeneous flows, with both wall slip and shear bands, in the vicinity of a shear-induced ``layering'' transition. Slow transient regimes and/or temporal fluctuations can also be resolved and exhibit complex spatio-temporal flow behaviors with sometimes more than two shear bands.Comment: 15 pages, 18 figures, submitted to Eur. Phys. J. A
    • …
    corecore