149 research outputs found
Air Quality and Comfort Characterisation within an Electric Vehicle Cabin in Heating and Cooling Operations†
This work is aimed at the experimental characterisation of air quality and thermal profile within an electric vehicle cabin, measuring at the same time the HVAC system energy consumption. Pollutant concentrations in the vehicle cabin are measured by means of a low-cost system of sensors. The effects of the HVAC system configuration, such as fresh-air and recirculation mode, on cabin air quality, are discussed. It is shown that the PM concentrations observed in recirculation mode are lower than those in fresh-air mode, while VOC concentrations are generally higher in recirculation than in fresh-air mode. The energy consumption is compared in different configurations of the HVAC system. The novelty of this work is the combined measurement of important comfort parameters such as air temperature distribution and air quality within the vehicle, together with the real time energy consumption of the HVAC system. A wider concept of comfort is enabled, based on the use of low-cost sensors in the automotive field
Novel role for polycystin-1 in modulating cell proliferation through calcium oscillations in kidney cells
Objectives: Polycystin-1 (PC1), a signalling receptor regulating Ca2+-permeable cation channels, is mutated in autosomal dominant polycystic kidney disease, which is typically characterized by increased cell proliferation. However, the precise mechanisms by which PC1 functions on Ca2+ homeostasis, signalling and cell proliferation remain unclear. Here, we investigated the possible role of PC1 as a modulator of non-capacitative Ca2+ entry (NCCE) and Ca2+ oscillations, with downstream effects on cell proliferation. Results and discussion: By employing RNA interference, we show that depletion of endogenous PC1 in HEK293 cells leads to an increase in serum-induced Ca2+ oscillations, triggering nuclear factor of activated T cell activation and leading to cell cycle progression. Consistently, Ca2+ oscillations and cell proliferation are increased in PC1-mutated kidney cystic cell lines, but both abnormal features are reduced in cells that exogenously express PC1. Notably, blockers of the NCCE pathway, but not of the CCE, blunt abnormal oscillation and cell proliferation. Our study therefore provides the first demonstration that PC1 modulates Ca2+ oscillations and a molecular mechanism to explain the association between abnormal Ca2+ homeostasis and cell proliferation in autosomal dominant polycystic kidney disease
C3aR-initiated signaling is a critical mechanism of podocyte injury in membranous nephropathy
: The deposition of anti-podocyte auto-antibodies in the glomerular subepithelial space induces primary membranous nephropathy (MN), the leading cause of nephrotic syndrome worldwide. Taking advantage of the glomerulus-on-a-chip system, we modeled human primary MN induced by anti-PLA2R antibodies. Here we show that exposure of primary human podocytes expressing PLA2R to MN serum results in IgG deposition and complement activation on their surface, leading to loss of the chip permselectivity to albumin. C3a receptor (C3aR) antagonists as well as C3AR gene silencing in podocytes reduced oxidative stress induced by MN serum and prevented albumin leakage. In contrast, inhibition of the formation of the membrane-attack-complex (MAC), previously thought to play a major role in MN pathogenesis, did not affect permselectivity to albumin. In addition, treatment with a C3aR antagonist effectively prevented proteinuria in a mouse model of MN, substantiating the chip findings. In conclusion, using a combination of pathophysiologically relevant in vitro and in vivo models, we established that C3a/C3aR signaling plays a critical role in complement-mediated MN pathogenesis, indicating an alternative therapeutic target for MN
Design, Analysis and Testing of a Novel Mitral Valve for Transcatheter Implantation
Mitral regurgitation is a common mitral valve dysfunction which may lead to heart failure. Because of the rapid aging of the population, conventional surgical repair and replacement of the pathological valve are often unsuitable for about half of symptomatic patients, who are judged high-risk. Transcatheter valve implantation could represent an effective solution. However, currently available aortic valve devices are inapt for the mitral position. This paper presents the design, development and hydrodynamic assessment of a novel bi-leaflet mitral valve suitable for transcatheter implantation. The device consists of two leaflets and a sealing component made from bovine pericardium, supported by a self-expanding wireframe made from superelastic NiTi alloy. A parametric design procedure based on numerical simulations was implemented to identify design parameters providing acceptable stress levels and maximum coaptation area for the leaflets. The wireframe was designed to host the leaflets and was optimised numerically to minimise the stresses for crimping in an 8 mm sheath for percutaneous delivery. Prototypes were built and their hydrodynamic performances were tested on a cardiac pulse duplicator, in compliance with the ISO5840-3:2013 standard. The numerical results and hydrodynamic tests show the feasibility of the device to be adopted as a transcatheter valve implant for treating mitral regurgitation
Biogenesis of mammalian microRNAs by a non-canonical processing pathway
Canonical microRNA biogenesis requires the Microprocessor components, Drosha and DGCR8, to generate precursor-miRNA, and Dicer to form mature miRNA. The Microprocessor is not required for processing of some miRNAs, including mirtrons, in which spliceosome-excised introns are direct Dicer substrates. In this study, we examine the processing of putative human mirtrons and demonstrate that although some are splicing-dependent, as expected, the predicted mirtrons, miR-1225 and miR-1228, are produced in the absence of splicing. Remarkably, knockout cell lines and knockdown experiments demonstrated that biogenesis of these splicing-independent mirtron-like miRNAs, termed ‘simtrons’, does not require the canonical miRNA biogenesis components, DGCR8, Dicer, Exportin-5 or Argonaute 2. However, simtron biogenesis was reduced by expression of a dominant negative form of Drosha. Simtrons are bound by Drosha and processed in vitro in a Drosha-dependent manner. Both simtrons and mirtrons function in silencing of target transcripts and are found in the RISC complex as demonstrated by their interaction with Argonaute proteins. These findings reveal a non-canonical miRNA biogenesis pathway that can produce functional regulatory RNAs
Nestin-GFP Transgene Reveals Neural Precursor Cells in Adult Skeletal Muscle
Background: Therapy for neural lesions or degenerative diseases relies mainly on finding transplantable active precursor cells. Identifying them in peripheral tissues accessible for biopsy, outside the central nervous system, would circumvent the serious immunological and ethical concerns impeding cell therapy. Methodology/Principal Findings: In this study, we isolated neural progenitor cells in cultured adult skeletal muscle from transgenic mice in which nestin regulatory elements control GFP expression. These cells also expressed the early neural marker Tuj1 and light and heavy neurofilament but not S100b, indicating that they express typical neural but not Schwann cell markers. GFP+/Tuj1+ cells were also negative for the endothelial and pericyte markers CD31 and a-smooth muscle actin, respectively. We established their a) functional response to glutamate in patch-clamp recordings; b) interstitial mesenchymal origin; c) replicative capacity; and d) the environment necessary for their survival after fluorescenceactivated cell sorting. Conclusions/Significance: We propose that the decline in nestin-GFP expression in muscle progenitor cells and its persistence in neural precursor cells in muscle cultures provide an invaluable tool for isolating a population of predifferentiated neural cells with therapeutic potential
Clonal Characterization of Rat Muscle Satellite Cells: Proliferation, Metabolism and Differentiation Define an Intrinsic Heterogeneity
Satellite cells (SCs) represent a distinct lineage of myogenic progenitors responsible for the postnatal growth, repair and maintenance of skeletal muscle. Distinguished on the basis of their unique position in mature skeletal muscle, SCs were considered unipotent stem cells with the ability of generating a unique specialized phenotype. Subsequently, it was demonstrated in mice that opposite differentiation towards osteogenic and adipogenic pathways was also possible. Even though the pool of SCs is accepted as the major, and possibly the only, source of myonuclei in postnatal muscle, it is likely that SCs are not all multipotent stem cells and evidences for diversities within the myogenic compartment have been described both in vitro and in vivo. Here, by isolating single fibers from rat flexor digitorum brevis (FDB) muscle we were able to identify and clonally characterize two main subpopulations of SCs: the low proliferative clones (LPC) present in major proportion (∼75%) and the high proliferative clones (HPC), present instead in minor amount (∼25%). LPC spontaneously generate myotubes whilst HPC differentiate into adipocytes even though they may skip the adipogenic program if co-cultured with LPC. LPC and HPC differ also for mitochondrial membrane potential (ΔΨm), ATP balance and Reactive Oxygen Species (ROS) generation underlying diversities in metabolism that precede differentiation. Notably, SCs heterogeneity is retained in vivo. SCs may therefore be comprised of two distinct, though not irreversibly committed, populations of cells distinguishable for prominent differences in basal biological features such as proliferation, metabolism and differentiation. By these means, novel insights on SCs heterogeneity are provided and evidences for biological readouts potentially relevant for diagnostic purposes described
Multidrug therapy for polycystic kidney disease: a review and perspective
Autosomal dominant polycystic kidney disease (ADPKD) is a
renal disorder characterized by the development of cysts in
both kidneys leading to end-stage renal disease (ESRD) by
the fifth decade of life. Cysts also occur in other organs, and
phenotypic alterations also involve the cardiovascular system.
Mutations in the PKD1 and PKD2 genes codifying for
polycystin-1 (PC1) and polycystin-2 (PC2) are responsible for
the 85 and 15% of ADPKD cases, respectively. PC1 and PC2
defects cause similar symptoms; however, lesions of PKD1
gene are associated with earlier disease onset and faster
ESRD progression. The development of kidney cysts requires
a somatic ‘second hit’ to promote focal cyst formation, but
also acute renal injury may affect cyst expansion, constituting
a ‘third hit’. PC1 and PC2 interact forming a complex that
regulates calcium homeostasis. Mutations of polycystins induce
alteration of Ca 2+ levels likely through the elevation of
cAMP. Furthermore, PC1 loss of function also induces activation
of mTOR and EGFR signaling. Impaired cAMP, mTOR and
EGFR signals lead to activation of a number of processes
stimulating both cell proliferation and fluid secretion, contributing
to cyst formation and enlargement. Consistently, the inhibition of mTOR, EGFR activity and cAMP accumulation
ameliorates renal function in ADPKD animal models, but
in ADPKD patients mild results have been shown. Here we
briefly review major ADPKD-related pathways, their inhibition
and effects on disease progression. Finally, we suggest
to reduce abnormal cell proliferation with possible clinical
amelioration of ADPKD patients by combined inhibition of
cAMP-, EGFR- and mTOR-related pathways
- …
