25 research outputs found

    Reduction of superintegrable systems: the anisotropic harmonic oscillator

    Full text link
    We introduce a new 2N--parametric family of maximally superintegrable systems in N dimensions, obtained as a reduction of an anisotropic harmonic oscillator in a 2N--dimensional configuration space. These systems possess closed bounded orbits and integrals of motion which are polynomial in the momenta. They generalize known examples of superintegrable models in the Euclidean plane.Comment: 6 pages. Version accepted in Physical Review

    Photoelectrochemical and EPR features of polymeric C3N4 and O-modified C3N4 employed for selective photocatalytic oxidation of alcohols to aldehydes

    No full text
    Four different C 3 N 4 specimens have been prepared, a bulk one (MCN), a thermally etched (MCN-TE), a solid prepared by hydrothermally treating MCN with H 2 O 2 (MCN-H 2 O 2 ) and a polymeric carbon nitride-hydrogen peroxide adduct (MCN-TE-H 2 O 2 ). The principal aim of this work was to correlate the capability of the prepared material to generate reactive oxygen species (ROS), under irradiation, with their photocatalytic activities in terms of conversion and selectivity for partial oxidation reactions. Photoelectrochemical studies revealed that MCN-TE represented the best material in terms of photoconductivity, whereas MCN-H 2 O 2 was defective and evidenced a poor mobility of carriers. EPR studies showed a maximum generation of reactive oxygen species irradiating the MCN-TE sample. The photocatalytic activity of these materials in the selective oxidation of three different alcohols to the corresponding aldehydes, both under UV and natural solar light, showed that the highest conversion was obtained in the presence of the MCN-TE sample, whereas the most selective one was MCN-TE-H 2 O 2 . Under solar light irradiation the performances of the powders were generally better than those under UV light. The characterization of the C 3 N 4 -based materials well justified their photocatalytic activity. The pristine C 3 N 4 materials were more active but less selective than those prepared in the presence of H 2 O 2

    Photocatalytic Selective Oxidation of Organic Compounds in Graphitic Carbon Nitride Systems: A Review

    No full text
    Recent work is reviewed concerning photocatalytic systems derived from graphitic carbon nitride (GCN) for the selective oxidation of various organic compounds including saturated and unsaturated hydrocarbons, alcohols, and organic sulfides. Examples are given for oxidative coupling of a series of organic compounds with the formation of carbon-nitrogen and carbon-carbon bonds as well as cyclization. The properties of various GCN samples were examined, including bulk, mesoporous, layered, and individual materials as well as samples modified with organic compounds, samples doped with metals and nonmetals, and GCN-derived composite materials. The outlook for future research in this field is given at the conclusion

    ALICE: Physics Performance Report

    No full text
    ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently involves more than 900 physicists and senior engineers, from both the nuclear and high-energy physics sectors, from over 90 institutions in about 30 countries. The ALICE detector is designed to cope with the highest particle multiplicities above those anticipated for Pb-Pb collisions (dN ch/dy up to 8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and pA), which primarily provide reference data for the nucleus-nucleus collisions. In addition, the pp data will allow for a number of genuine pp physics studies. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2004. The experiment is currently under construction and will be ready for data taking with both proton and heavy-ion beams at the start-up of the LHC. Since the comprehensive information on detector and physics performance was last published in the ALICE Technical Proposal in 1996, the detector, as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) provides an updated and comprehensive summary of the performance of the various ALICE subsystems, including updates to the Technical Design Reports, as appropriate. The PPR is divided into two volumes. Volume I, published in 2004 (CERN/LHCC 2003-049, ALICE Collaboration 2004 J. Phys. G: Nucl. Part. Phys. 30 1517-1763), contains in four chapters a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, the experimental conditions at the LHC, a short summary and update of the subsystem designs, and a description of the offline framework and Monte Carlo event generators. The present volume, Volume II, contains the majority of the information relevant to the physics performance in proton-proton, proton-nucleus, and nucleus-nucleus collisions. Following an introductory overview, Chapter 5 describes the combined detector performance and the event reconstruction procedures, based on detailed simulations of the individual subsystems. Chapter 6 describes the analysis and physics reach for a representative sample of physics observables, from global event characteristics to hard processes

    ALICE: Physics performance report, volume I

    No full text
    Cortese P, Dellacasa G, Ramello L, et al. ALICE: Physics performance report, volume I. Journal of Physics G: Nuclear and Particle Physics. 2004;30(11):1517-1763.ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently includes more than 900 physicists and senior engineers, from both nuclear and high-energy physics, from about 80 institutions in 28 countries. The experiment was approved in February 1997. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2001 and construction has started for most detectors. Since the last comprehensive information on detector and physics performance was published in the ALICE Technical Proposal in 1996, the detector as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) will give an updated and comprehensive summary of the current status and performance of the various ALICE subsystems, including updates to the Technical Design Reports, where appropriate, as well as a description of systems which have not been published in a Technical Design Report. The PPR will be published in two volumes. The current Volume I contains: 1. a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, 2. relevant experimental conditions at the LHC, 3. a short summary and update of the subsystem designs, and 4. a description of the offline framework and Monte Carlo generators. Volume II, which will be published separately, will contain detailed simulations of combined detector performance, event reconstruction, and analysis of a representative sample of relevant physics observables from global event characteristics to hard processes. (Some figures in this article are in colour only in the electronic version.
    corecore