84 research outputs found
Accuracy and Precision of Tidal Wetland Soil Carbon Mapping in the Conterminous United States
Tidal wetlands produce long-term soil organic carbon (C) stocks. Thus for carbon accounting purposes, we need accurate and precise information on the magnitude and spatial distribution of those stocks. We assembled and analyzed an unprecedented soil core dataset, and tested three strategies for mapping carbon stocks: applying the average value from the synthesis to mapped tidal wetlands, applying models fit using empirical data and applied using soil, vegetation and salinity maps, and relying on independently generated soil carbon maps. Soil carbon stocks were far lower on average and varied less spatially and with depth than stocks calculated from available soils maps. Further, variation in carbon density was not well-predicted based on climate, salinity, vegetation, or soil classes. Instead, the assembled dataset showed that carbon density across the conterminous united states (CONUS) was normally distributed, with a predictable range of observations. We identified the simplest strategy, applying mean carbon density (27.0 kg C m−3), as the best performing strategy, and conservatively estimated that the top meter of CONUS tidal wetland soil contains 0.72 petagrams C. This strategy could provide standardization in CONUS tidal carbon accounting until such a time as modeling and mapping advancements can quantitatively improve accuracy and precision
The Effect of Fertilization on Biomass and Metabolism in North Carolina Salt Marshes: Modulated by Location-Specific Factors
The resilience of salt marshes to sea level rise depends on vertical accretion through belowground biomass production and sediment deposition to maintain elevation above sea level. Increased nitrogen (N) availability from anthropogenic sources may stimulate aboveground biomass production and sediment deposition and, thus, accretion; however, increased N may also negatively impact marsh accretion by decreasing belowground biomass and increasing net CO2 emissions. A study was conducted in Spartina alterniflora‐dominated salt marshes in North Carolina, USA, to determine how responses to fertilization vary across locations with different physical and chemical characteristics. Pore water residence time, inundation time, and proximity to tidal creeks drove spatial differences in pore water sulfide, ammonium, and dissolved carbon concentrations. Although annual respiration and gross primary production were greater at the creek edge than interior marsh sites, net ecosystem CO2 exchange (NEE) was nearly balanced at all the sites. Fertilization decreased belowground biomass in the interior sites but not on the creek edge. Aboveground biomass, respiration, gross primary production, and net CO2 emissions increased in response to fertilization, but responses were diminished in interior marsh locations with high pore water sulfide. Hourly NEE measured by chambers were similar to hourly NEE observed by a nearby eddy covariance tower, but correcting for inundation depth relative to plant height was critical for accurate extrapolation to annual fluxes. The impact of fertilization on biomass and NEE, and thus marsh resilience, varied across marsh locations depending upon location‐specific pore water sulfide concentrations
Representing the function and sensitivity of coastal interfaces in earth system models
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ward, N. D., Megonigal, J. P., Bond-Lamberty, B., Bailey, V. L., Butman, D., Canuel, E. A., Diefenderfer, H., Ganju, N. K., Goni, M. A., Graham, E. B., Hopkinson, C. S., Khangaonkar, T., Langley, J. A., McDowell, N. G., Myers-Pigg, A. N., Neumann, R. B., Osburn, C. L., Price, R. M., Rowland, J., Sengupta, A., Simard, M., Thornton, P. E., Tzortziou, M., Vargas, R., Weisenhorn, P. B., & Windham-Myers, L. Representing the function and sensitivity of coastal interfaces in earth system models. Nature Communications, 11(1), (2020): 2458, doi:10.1038/s41467-020-16236-2.Between the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth’s climate, yet global models lack representation of coastal processes and related feedbacks, impeding their predictions of coastal and global responses to change. Here, we assess existing coastal monitoring networks and regional models, existing challenges in these efforts, and recommend a path towards development of global models that more robustly reflect the coastal interface.Funding for this work was provided by Pacific Northwest National Laboratory (PNNL) Laboratory Directed Research & Development (LDRD) as part of the Predicting Ecosystem Resilience through Multiscale Integrative Science (PREMIS) Initiative. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. Additional support to J.P.M. was provided by the NSF-LTREB program (DEB-0950080, DEB-1457100, DEB-1557009), DOE-TES Program (DE-SC0008339), and the Smithsonian Institution. This manuscript was motivated by discussions held by co-authors during a three-day workshop at PNNL in Richland, WA: The System for Terrestrial Aquatic Research (STAR) Workshop: Terrestrial-Aquatic Research in Coastal Systems. The authors thank PNNL artist Nathan Johnson for preparing the figures in this manuscript and Terry Clark, Dr. Charlette Geffen, and Dr. Nancy Hess for their aid in organizing the STAR workshop. The authors thank all workshop participants not listed as authors for their valuable insight: Lihini Aluwihare (contributed to biogeochemistry discussions and development of concept for Fig. 3), Gautam Bisht (contributed to modeling discussion), Emmett Duffy (contributed to observational network discussions), Yilin Fang (contributed to modeling discussion), Jeremy Jones (contributed to biogeochemistry discussions), Roser Matamala (contributed to biogeochemistry discussions), James Morris (contributed to biogeochemistry discussions), Robert Twilley (contributed to biogeochemistry discussions), and Jesse Vance (contributed to observational network discussions). A full report on the workshop discussions can be found at https://www.pnnl.gov/publications/star-workshop-terrestrial-aquatic-research-coastal-systems
Host suitability of weeds and forage species to root-knot nematode meloidogyne graminicola as a funcion of irrigation management
Typha (Cattail) Invasion in North American Wetlands: Biology, Regional Problems, Impacts, Ecosystem Services, and Management
Typha is an iconic wetland plant found worldwide. Hybridization and anthropogenic disturbances have resulted in large increases in Typha abundance in wetland ecosystems throughout North America at a cost to native floral and faunal biodiversity. As demonstrated by three regional case studies, Typha is capable of rapidly colonizing habitats and forming monodominant vegetation stands due to traits such as robust size, rapid growth rate, and rhizomatic expansion. Increased nutrient inputs into wetlands and altered hydrologic regimes are among the principal anthropogenic drivers of Typha invasion. Typha is associated with a wide range of negative ecological impacts to wetland and agricultural systems, but also is linked with a variety of ecosystem services such as bioremediation and provisioning of biomass, as well as an assortment of traditional cultural uses. Numerous physical, chemical, and hydrologic control methods are used to manage invasive Typha, but results are inconsistent and multiple methods and repeated treatments often are required. While this review focuses on invasive Typha in North America, the literature cited comes from research on Typha and other invasive species from around the world. As such, many of the underlying concepts in this review are relevant to invasive species in other wetland ecosystems worldwide
Methane fluxes in tidal marshes of the conterminous United States
Altres ajuts: acords transformatius de la UABMethane (CH4) is a potent greenhouse gas (GHG) with atmospheric concentrations that have nearly tripled since pre-industrial times. Wetlands account for a large share of global CH4 emissions, yet the magnitude and factors controlling CH4 fluxes in tidal wetlands remain uncertain. We synthesized CH4 flux data from 100 chamber and 9 eddy covariance (EC) sites across tidal marshes in the conterminous United States to assess controlling factors and improve predictions of CH4 emissions. This effort included creating an open-source database of chamber-based GHG fluxes (https://doi.org/10.25573/serc.14227085). Annual fluxes across chamber and EC sites averaged 26 ± 53 g CH4 m-2 year-1, with a median of 3.9 g CH4 m-2 year-1, and only 25% of sites exceeding 18 g CH4 m-2 year-1. The highest fluxes were observed at fresh-oligohaline sites with daily maximum temperature normals (MATmax) above 25.6°C. These were followed by frequently inundated low and mid-fresh-oligohaline marshes with MATmax ≤25.6°C, and mesohaline sites with MATmax >19°C. Quantile regressions of paired chamber CH4 flux and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below 5 ± 3 nmol m-2 s-1 at sulfate concentrations >4.7 ± 0.6 mM, porewater salinity >21 ± 2 psu, or surface water salinity >15 ± 3 psu. Across sites, salinity was the dominant predictor of annual CH4 fluxes, while within sites, temperature, gross primary productivity (GPP), and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP preceded temperature in importance for predicting CH4 flux changes, while the opposite was observed at the seasonal scale. Water levels influenced the timing and pathway of diel CH4 fluxes, with pulsed releases of stored CH4 at low to rising tide. This study provides data and methods to improve tidal marsh CH4 emission estimates, support blue carbon assessments, and refine national and global GHG inventories
Substantial hysteresis in emergent temperature sensitivity of global wetland CH<sub>4</sub> emissions
Wetland methane (CH4) emissions (FCH4
) are important in global carbon budgets and climate
change assessments. Currently, FCH4
projections rely on prescribed static temperature
sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent
FCH4
temperature dependence across spatial scales for use in models; however, sitelevel
studies demonstrate that FCH4
are often controlled by factors beyond temperature.
Here, we evaluate the relationship between FCH4
and temperature using observations from
the FLUXNET-CH4 database. Measurements collected across the globe show substantial
seasonal hysteresis between FCH4
and temperature, suggesting larger FCH4
sensitivity to
temperature later in the frost-free season (about 77% of site-years). Results derived from a
machine-learning model and several regression models highlight the importance of representing
the large spatial and temporal variability within site-years and ecosystem types.
Mechanistic advancements in biogeochemical model parameterization and detailed measurements
in factors modulating CH4 production are thus needed to improve global CH4
budget assessments.s
Substantial hysteresis in emergent temperature sensitivity of global wetland CH emissions
Wetland methane (CH) emissions (F) are important in global carbon budgets and climate change assessments. Currently, F projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent F temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that F are often controlled by factors beyond temperature. Here, we evaluate the relationship between F and temperature using observations from the FLUXNET-CH database. Measurements collected across the globe show substantial seasonal hysteresis between F and temperature, suggesting larger F sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH production are thus needed to improve global CH budget assessments
FLUXNET-CH<sub>4</sub> synthesis activity: objectives, observations, and future directions
We describe a new coordination activity and initial results for a global synthesis of eddy covariance CH4 flux measurements
Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
Wetland methane (CH4) emissions (FCH4) are important in global carbon budgets and climate change assessments. Currently, FCH4 projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent FCH4 temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that FCH4 are often controlled by factors beyond temperature. Here, we evaluate the relationship between FCH4 and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between FCH4 and temperature, suggesting larger FCH4 sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments. Wetland methane emissions contribute to global warming, and are oversimplified in climate models. Here the authors use eddy covariance measurements from 48 global sites to demonstrate seasonal hysteresis in methane-temperature relationships and suggest the importance of microbial processes.Peer reviewe
- …
