1,172 research outputs found

    Trigonometric Parallaxes of Massive Star Forming Regions: III. G59.7+0.1 and W 51 IRS2

    Full text link
    We report trigonometric parallaxes for G59.7+0.1 and W 51 IRS2, corresponding to distances of 2.16^{+0.10}_{-0.09} kpc and 5.1^{+2.9}_{-1.4} kpc, respectively. The distance to G59.7+0.1 is smaller than its near kinematic distance and places it between the Carina-Sagittarius and Perseus spiral arms, probably in the Local (Orion) spur. The distance to W 51 IRS2, while subject to significant uncertainty, is close to its kinematic distance and places it near the tangent point of the Carina-Sagittarius arm. It also agrees well with a recent estimate based on O-type star spectro/photometry. Combining the distances and proper motions with observed radial velocities gives the full space motions of the star forming regions. We find modest deviations of 5 to 10 km/s from circular Galactic orbits for these sources, both counter to Galactic rotation and toward the Galactic center.Comment: 16 pages, 6 figures; to appear in the Astrophysical Journa

    The Financial Economics of White Precious Metals - A Survey

    Get PDF
    This article provides a review of the academic literature on the financial economics of silver, platinum and palladium. The survey covers the findings on a wide variety of topics relation to the White Precious Metals including Market Efficiency, Forecastability, Behavioral Findings, Diversification Benefits, Volatility Drivers, Macroeconomic Determinants, and their relationships with other assets

    Dynamically Driven Evolution of the Interstellar Medium in M51

    Full text link
    We report the highest-fidelity observations of the spiral galaxy M51 in CO emission, revealing the evolution of giant molecular clouds (GMCs) vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (so-called GMAs) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics --their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the inter-arm region and into the next spiral arm passage.Comment: 6 pages, including 3 figures. Accepted, ApJ

    Dynamically Driven Evolution of the Interstellar Medium in M51

    Get PDF
    Massive star formation occurs in giant molecular clouds (GMCs); an understanding of the evolution of GMCs is a prerequisite to develop theories of star formation and galaxy evolution. We report the highest-fidelity observations of the grand-design spiral galaxy M51 in carbon monoxide (CO) emission, revealing the evolution of GMCs vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (giant molecular associations (GMAs)) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H_2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics—their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the interarm region and into the next spiral arm passage

    Counteracting effects operating on Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP2) function drive selection of the recurrent Y62D and Y63C substitutions in Noonan syndrome

    Get PDF
    Activating mutations in PTPN11 cause Noonan syndrome, the most common nonchromosomal disorder affecting development and growth. PTPN11 encodes SHP2, an Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase that positively modulates RAS function. Here, we characterized functionally all possible amino acid substitutions arising from single-base changes affecting codons 62 and 63 to explore the molecular mechanisms lying behind the largely invariant occurrence of the Y62D and Y63C substitutions recurring in Noonan syndrome. We provide structural and biochemical data indicating that the autoinhibitory interaction between the N-SH2 and protein-tyrosine phosphatase (PTP) domains is perturbed in both mutants as a result of an extensive structural rearrangement of the N-SH2 domain. Most mutations affecting Tyr(63) exerted an unpredicted disrupting effect on the structure of the N-SH2 phosphopeptide-binding cleft mediating the interaction of SHP2 with signaling partners. Among all the amino acid changes affecting that codon, the disease-causing mutation was the only substitution that perturbed the stability of the inactive conformation of SHP2 without severely impairing proper phosphopeptide binding of N-SH2. On the other hand, the disruptive effect of the Y62D change on the autoinhibited conformation of the protein was balanced, in part, by less efficient binding properties of the mutant. Overall, our data demonstrate that the selection-by-function mechanism acting as driving force for PTPN11 mutations affecting codons 62 and 63 implies balancing of counteracting effects operating on the allosteric control of the function of SHP2

    Retargeting FX binding-ablated HAdV-5 to vascular cells by inclusion of the RGD-4C peptide in hexon hypervariable region 7 and the HI loop

    Get PDF
    Recent studies have generated interest in the function of human adenovirus serotype 5 (HAdV-5) hexon:  factor X (FX) binding and subsequent hepatocyte transduction and interaction with the immune system. Here, we retargeted adenovirus serotype 5 vectors, ablated for FX interaction, by replacing amino acids in hexon HVR7 with RGD-4C or inserting the peptide into the fibre HI loop. These genetic modifications in the capsid were compatible with virus assembly, and could efficiently retarget transduction of the vector via the αvβ3/5 integrin-mediated pathway, but did not alter immune recognition by pre-existing human neutralizing anti-HAdV-5 antibodies or by natural antibodies in mouse serum. Thus, FX-binding-ablated HAdV-5 can be retargeted but remain sensitive to immune-mediated attack. These findings further refine HAdV-5-based vectors for human gene therapy and inform future vector development

    Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis

    Get PDF
    Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors

    Lessons learned from a comprehensive electronic patient record procurement process-implications for healthcare organisations

    Get PDF
    BACKGROUND: This study describes learning from procurement of a comprehensive electronic patient record (EPR/electronic health record (EHR)), system for a specialist clinical academic institution. METHOD: Retrospective review of procurement process in addition to evaluation of peer-reviewed literature in the field. RESULTS: Main lessons learned include the importance of detailed preparation of organisational requirements/specifications and organisational 'readiness'. Early staff involvement, resulting in ownership of the selected system by the organisation was a key achievement. The scoring process used required significant resource commitment but, despite being extensive in scope, provided relatively poor distinction between suppliers, despite significant variation in supplier self-scoring. Other elements, such as demonstrations and site visits, provided superior evaluation of functional abilities, and specification requirements should be regarded as threshold evaluation. CONCLUSION: While principles should be followed, the procurement process must be modified to meet the needs of the specific organisation, in terms of its clinical activities, digital maturity, existing infrastructure and budget

    From a movement-deficient grapevine fanleaf virus to the identification of a new viral determinant of nematode transmission

    Get PDF
    Grapevine fanleaf virus (GFLV) and arabis mosaic virus (ArMV) are nepoviruses responsible for grapevine degeneration. They are specifically transmitted from grapevine to grapevine by two distinct ectoparasitic dagger nematodes of the genus Xiphinema. GFLV and ArMV move from cell to cell as virions through tubules formed into plasmodesmata by the self-assembly of the viral movement protein. Five surface-exposed regions in the coat protein called R1 to R5, which differ between the two viruses, were previously defined and exchanged to test their involvement in virus transmission, leading to the identification of region R2 as a transmission determinant. Region R4 (amino acids 258 to 264) could not be tested in transmission due to its requirement for plant systemic infection. Here, we present a fine-tuning mutagenesis of the GFLV coat protein in and around region R4 that restored the virus movement and allowed its evaluation in transmission. We show that residues T258, M260, D261, and R301 play a crucial role in virus transmission, thus representing a new viral determinant of nematode transmission
    • …
    corecore