1,365 research outputs found

    Quantum Monte Carlo study of ring-shaped polariton parametric luminescence in a semiconductor microcavity

    Get PDF
    We present a quantum Monte Carlo study of the quantum correlations in the parametric luminescence from semiconductor microcavities in the strong exciton-photon coupling regime. As already demonstrated in recent experiments, a ring-shaped emission is obtained by applying two identical pump beams with opposite in-plane wavevectors, providing symmetrical signal and idler beams with opposite in-plane wavevectors on the ring. We study the squeezing of the signal-idler difference noise across the parametric instability threshold, accounting for the radiative and non-radiative losses, multiple scattering and static disorder. We compare the results of the complete multimode Monte Carlo simulations with a simplified linearized quantum Langevin analytical model

    Sea surface temperature of the coastal zones of France

    Get PDF
    Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery

    New development of a Radiation-Hard Polycrystalline CdTe Detector for LHC Luminosity Monitoring

    Get PDF
    Detectors presently considered for monitoring and control of the LHC luminosity will sample the hadronic/electromagnetic showers produced by neutrons and photons in copper absorbers designed to protect the superconducting magnets from quenching. At this location the detectors will have to withstand extreme radiation levels and their long term operation will have to be assured without requiring human intervention. For this application we have successfully tested thick polycrystalline-CdTe detectors. The paper summarizes the results obtained on rise-times, sensitivity and resistance to neutron irradiation up to a dose of 10 ^15/cm 2

    The singular continuous diffraction measure of the Thue-Morse chain

    Get PDF
    The paradigm for singular continuous spectra in symbolic dynamics and in mathematical diffraction is provided by the Thue-Morse chain, in its realisation as a binary sequence with values in {±1}\{\pm 1\}. We revisit this example and derive a functional equation together with an explicit form of the corresponding singular continuous diffraction measure, which is related to the known representation as a Riesz product.Comment: 6 pages, 1 figure; revised and improved versio

    CdTe Photoconductors for LHC Luminosity Monitoring

    Get PDF
    Detectors using CdTe photoconductors are being used with great success in LEP to monitor the vertical beam emittance. They can withstand tremendous irradiation, of up to 10^13 Gy, from hard X-rays. For the LHC, monitors measuring the relative luminosity will be placed inside absorbers located 142 m from the interaction points, where they will receive about 10^8 Gy per year due to gamma radiation and neutrons. Thick-polycristalline-CdTe detectors were recently tested for speed, sensitivity and radiation resistance before and after receiving up to 10^15 neutrons per cm^2. The test results are presented here, along with a comparison of the calculated charge deposition in Silicon, Diamond and GaAs detectors

    Sea surface temperature of the coastal zones of France

    Get PDF
    The results of an investigation to map the various thermal gradients in the coastal zones of France are presented. Paricular emphasis is given to the natural phenomena and man made thermal effluents. It is shown that a close correlation exist between wind speed direction and the offshore width of the effluent

    Acute changes in peritoneal morphology and transport properties with infectious peritonitis and mechanical injury

    Get PDF
    Acute changes in peritoneal morphology and transport properties with infectious peritonitis and mechanical injury. Peritoneal clearance studies were performed in rats undergoing acute peritoneal dialysis. Some of these animals were then exposed to laparotomy and mechanical drying of the peritoneum. Peritoneal clearance studies were repeated at intervals up to 11 days. Another group of rats was placed on daily peritoneal dialysis and allowed to spontaneously develop peritonitis which was not treated. These rats underwent peritoneal transport studies at differing durations of infection. In all groups, animals were sacrificed at the time of the last transport studies for morphological assessment of the peritoneum by light microscopy, scanning electron microscopy, and transmission electron microscopy. The results showed similar decreases in drainage volume and increases in glucose absorption and protein losses with both infection and drying. Both types of injury resulted in extensive mesothelial structural changes. While drying caused mainly denudation of the mesothelial surface, infectious peritonitis was associated with separation of mesothelial cells, and the appearance of numerous white blood cells between and on mesothelial cells. Exposure to peritoneal dialysis alone had no obvious effects on anatomy. Although changes in the peritoneal microcirculation and deeper structures cannot be excluded as contributing to peritoneal transport alterations, the findings suggest that alterations of mesothelium might explain some of the changes in peritoneal transport properties under the conditions of these studies.Modifications aiguës de la morphologie et des propriétés de transport du péritoine par péritonite infectieuse et lésion mécanique. Des études de clearance péritonéale ont été entreprises chez des rats en dialyse péritonéale aiguë. Certains de ces animaux étaient soumis à une laparotomie et à un séchage mécanique du péritoine. Les études de clearance péritonéale étaient répétées à des intervalles allant jusqu'à 11 jours. Un autre groupe de rat était placé en dialyse péritonéale journalière, et il pouvait développer spontanément une péritonite qui n'était pas traitée. Chez ces rats ont été effectuées des études de transport péritonéal à différents stades d'infection. Dans tous les groupes, les animaux étaient sacrifiés lors de la dernière étude de transport afin d'étudier morphologiquement le péritoine par microscopie optique, microscopie électronique à balayage, et microscopie électronique par transmission. Les résultats ont montré des diminutions du volume de drainage et des augmentations de l'absorption du glucose et des pertes protéiques identiques avec l'infection ou le séchage. Les deux types de lésions ont entrainé des modifications structurelles mésothéliales importantes. Tandis que le séchage entrainait principalement une dénudation de la surface mésothéliale, la péritonite infectieuse était associée à une séparation des cellules mésothéliales, et à l'apparition de nombreux globules blancs entre et sur les cellules mésothéliales. L'exposition à la dialyse péritonéale seule n'avait pas d'effets anatomiques évidents. Bien que la contribution aux altérations du transport péritonéal de modifications de la micro-circulation péritonéale et des structures plus profondes ne puisse être exclue, ces résultats suggèrent que les altérations du mésothélium pourraient expliquer certaines des modifications des propriétés de transport péritonéal dans les conditions de ces études

    Fast Polycrystalline-CdTe Detectors for LHC Luminosity Measurements

    Get PDF
    Beam diagnostics in future high-energy accelerators will require long lived instrumentation in highly hostile radiation environments. A research program aiming at individuating new solutions and testing them under extreme operational conditions has been launched at CERN in the framework of developments for the LHC instrumentation. Its outcome might be used in future accelerator projects, in industry or in physics applications. The detectors which will be adopted for the LHC luminosity monitoring and optimization will be installed close to or inside copper absorbers specifically designed for radiation protection of the accelerator magnetic elements in the interaction regions. These detectors will have to withstand extreme radiation levels and their long-term operation has to be assured without requiring human intervention. Polycrystalline-CdTe detectors have demonstrated their radiation hardness against extreme doses of X-ray exposure in the LEP collider and are considered as good candidates for LHC luminosity monitoring applications. After recalling a series of measurements obtained on CdTe samples exposed to different sources to study their time response and sensitivity we present results on their performance after irradiation at doses of 10^16 neutrons/cm^2. This is a preliminary step in the program intended to test the samples during and after irradiation up to levels of 10^18 neutrons/cm^2 and 10^16 protons/cm^2 comparable to those anticipated at the detector locations over ten years of operation of the accelerator

    A focal plane detector design for a wide-band Laue-lens telescope

    Get PDF
    The energy range above 60 keV is important for the study of many open problems in high energy astrophysics such as the role of Inverse Compton with respect to synchrotron or thermal processes in GRBs, non thermal mechanisms in SNR, the study of the high energy cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. Recently the development of high energy Laue lenses with broad energy bandpasses from 60 to 600 keV have been proposed for a Hard X ray focusing Telescope (HAXTEL) in order to study the X-ray continuum of celestial sources. The required focal plane detector should have high detection efficiency over the entire operative range, a spatial resolution of about 1 mm, an energy resolution of a few keV at 500 keV and a sensitivity to linear polarization. We describe a possible configuration of the focal plane detector based on several CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high energy. Each layer can operate both as a separate position sensitive detector and polarimeter or work with other layers to increase the overall photopeak efficiency. Each layer has a hexagonal shape in order to minimize the detector surface required to cover the lens field of view. The pixels would have the same geometry so as to provide the best coupling with the lens point spread function and to increase the symmetry for polarimetric studies.Comment: 10 pages, 9 figure
    corecore