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We present a quantum Monte Carlo study of the quantum correlations in the parametric lumines-
cence from semiconductor microcavities in the strong exciton-photon coupling regime. As already
demonstrated in recent experiments, a ring-shaped emission is obtained by applying two identical
pump beams with opposite in-plane wavevectors, providing symmetrical signal and idler beams with
opposite in-plane wavevectors on the ring. We study the squeezing of the signal-idler difference noise
across the parametric instability threshold, accounting for the radiative and non-radiative losses,
multiple scattering and static disorder. We compare the results of the complete multimode Monte
Carlo simulations with a simplified linearized quantum Langevin analytical model.

In the last years, semiconductor microcavities in the
strong exciton-photon coupling regime1,2 have been at-
tracting a considerable deal of interest because of their
remarkable nonlinear parametric interactions3,4,5,6,7: tak-
ing advantage of a triply-resonant condition, ultra-low
parametric oscillation thresholds have been observed
in geometries which look very promising in view of
applications. Very recently, experimental and theoret-
ical investigations are starting to address the genuine
quantum optical properties of the polariton parametric
emission8,9,10,11,12,13,14. The signal-idler pairs generated
by the coherent scattering of two pump polaritons are
expected to have non-classical properties, such as entan-
glement and two-mode squeezing, which are interesting
e.g. for quantum teleportation. The main limitation of
the original non-degenerate parametric scheme where the
cavity was pumped by a single incident beam at a finite
’magic’ angle9,14,15, was the strong intensity asymmetry
between the signal and idler photon emission. This signal-
idler asymmetry is in fact strongly detrimental in view of
the observation of significant extra-cavity quantum cor-
relations to be used for continuous variable experiments.

This difficulty has been overcome in recent
experiments16 by using a pair of identical pump
beams with small and opposite in-plane wavevectors. In
this degenerate parametric scheme, a pair of perfectly
symmetric signal and idler beams are emitted at the same
frequency and with opposite wavevectors. For symmetry
reasons, the momentum-space parametric luminescence
pattern is in this case a ring, with approximately the
same radius as the pump wavevector. Interestingly, this
kind of ring-shaped polariton parametric luminescence
can be obtained also with a single pump at normal
incidence (zero in-plane wavevector) on a multiple mi-
crocavity with multiple photonic branches17. In order to
quantify the performances of this system as a source of
correlated photons, it is then important to characterize
the robustness of the quantum correlations in the para-
metric luminescence against competing effects such as

radiative and non-radiative losses as well as multimode
competition and multiple scattering processes. Given the
unavoidable imperfections of any solid-state system, it is
also crucial to assess the impact of a weak static disorder
on signal-idler correlations: disorder is in fact known
to be responsible for the so-called resonant Rayleigh
scattering of pump photons18, which also produce a
ring-shaped pattern in momentum space, yet without
any quantum correlation.

In this paper, we make use of the Wigner Quantum
Monte Carlo method13 for polaritons in semiconductor
microcavities to numerically tackle these key issues. The
paper is structured as follows. In Sec. I, we present the
model Hamiltonian and quantum Monte Carlo technique
used to calculate the observables. Results for the ring-
shaped polariton parametric luminescence with or with-
out a static disorder are reported in Sec. II. Correspond-
ing numerical results for the quantum correlations are
presented in Sec.III and then compared to a simplified
quantum Langevin analytical model in Sec. IV. Finally,
conclusions are drawn in Sec.V.

I. HAMILTONIAN AND QUANTUM MONTE

CARLO TECHNIQUE

In this paper, we consider the quantum field Hamilto-
nian introduced in Ref. 8:

H =

∫

dx
∑

ij={X,C}

Ψ̂†
i (x)

[

h
0
ij + Vi(x)δij

]

Ψ̂†
j(x)

+
~g

2

∫

dxΨ̂†
X(x)Ψ̂†

X(x)Ψ̂X(x)Ψ̂X(x)

+

∫

dx~Fp(x, t)Ψ̂†
C(x) + h.c. , (1)

where x is the in-plane spatial position. The field oper-
ators Ψ̂X,C(x) respectively describe excitons and cavity
photons. We assume an exciton density far below the
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saturation density nsat
19, so the field operators obey the

Bose commutation rules : [Ψ̂i(x), Ψ̂†
j(x

′)] = δx,x′δi,j . The

linear Hamiltonian h
0
ij is:

h
0 = ~

(

ωX(−i∇) ΩR

ΩR ωC(−i∇)

)

, (2)

where ωC(k) = ω0
C

√

1 + k2/k2
z is the cavity dispersion

as a function of the in-plane wavevector k and kz is
the quantized photon wavevector in the growth direc-
tion. The exciton dispersion is assumed to be momentum-
independent, i.e., ωX(k) = ω0

X . The quantity ΩR is the
vacuum Rabi frequency of the exciton-cavity photon cou-
pling. The eigenmodes of the linear Hamiltonian h0 are
called Lower and Upper Polaritons (LP,UP ). Their en-
ergies are respectively ~ωLP (k) and ~ωUP (k). The non-
linear interaction term g is due to the exciton-exciton
collisional interactions, which are modelled by a contact
potential19. For the sake of simplicity, we restrict our-
selves to the case of a circularly polarized pump beam,
which allows us to ignore the spin degrees of freedom and
the complex spin dynamics20,21,22. The potential due to
the static disorder is included in VX,C(x).

The polariton dynamics is studied by means of nu-
merical simulations based on the so-called Wigner quan-
tum Monte Carlo method, explained in detail in Ref.13.
Within this framework, the time-evolution of the quan-
tum fields is described by stochastic equations for the C-
number fields ψX,C(x). The evolution equation includes
a non-linear term due to interactions, as well as dissi-
pation and noise terms due to the coupling to the loss
channels. Actual calculations are performed on a finite
two-dimensional spatial grid of nx × ny points regularly
spaced over the integration box of size Lx ×Ly. The dif-
ferent Monte Carlo configurations are obtained as statis-
tically independent realizations of the noise terms.

Expectation values for the observables are then ob-
tained by taking the configuration average of the stochas-
tic fields. As usual in Wigner approaches13, the stochas-
tic average over noise provide expectation values for the
totally symmetrized operators, namely:

〈O1...ON 〉W ≡
1

N !

∑

P

〈ÔP (1)...ÔP (N)〉 , (3)

the sum being made over all the permutations P of an
ensemble of N objects. Each operator Ôa represents
here some quantum field component, while Oa is the
corresponding C-number stochastic field.

The relation between real- and momentum-space op-
erators is:

Ψ̂C(x) =
1

√

LxLy

∑

k

eikx âk , (4)

Ψ̂X(x) =
1

√

LxLy

∑

k

eikx b̂k , (5)

where âk (b̂k) represents the photonic (excitonic) de-
struction operator for the k-mode, and satisfy the usual

Bose commutation rules [âk, â
†
k′ ] = [b̂k, b̂

†
k′ ] = δk,k′ .

The expectation value of the in-cavity photon popula-

tion n̂k = â†k âk in the k-mode reads:

〈n̂k〉 =
1

2
〈â†kâk + âkâ

†
k〉 −

1

2
= |αk|2 −

1

2
, (6)

where the overlined quantities are stochastic configura-
tion averages, and αk is the C-number stochastic field
value corresponding to the operator âk Because of the
weak, but still finite transmittivity of the cavity mirrors,
all observables for the in-cavity field transfer13,24 into the
corresponding ones for the extra-cavity luminescence at
the same in-plane momentum k.

II. RESULTS FOR THE RING-SHAPED

LUMINESCENCE

A. In the absence of disorder
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FIG. 1: Solid lines: energy dispersion of the Lower and Up-
per Polariton branches. Dashed lines: the bare quantum well
exciton and cavity photon dispersions. The filled circles in-
dicate the wavevectors of the two pumps (p1 and p2). Note
that in the chosen configuration, the photonic fraction of the
Lower Polariton at the pump wavevector is ≃ 0.46. Cavity pa-
rameters: ~ΩR = 2.5 meV, ~ω0

C = 1400 meV, ~ω0
X = 1400.5

meV, kz = 20 µm−1. Pump parameters: kp = 0.6981 µm−1,
ωp = ωLP (kp) = 1398.2 meV.

In this work, we will consider the following excitation
field:

Fp(x, t) = Fp

(

e−ikpx + eikpx
)

e−iωpt . (7)

This field describes two identical monochromatic plane-
wave pumps with opposite wavevectors oriented along
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the x-axis. Both beams have the same values for the am-
plitude Fp and the frequency ωp. This latter is chosen
to be resonant with the LP-branch, i.e. ωp = ωLP (kp).
Fig. 1 depicts the dispersion of the polariton branches
and the position of the pump wavevectors. The scatter-
ing process between a pair of ±kp pump polaritons via
the non-linear interactions, gives rise to a pair of sig-
nal/idler polaritons of opposite wavevectors ±k. Mod-
ulo the weak blue-shift of the modes due to interactions,
the energy-momentum conservation (phase-matching) is
trivially fulfilled if ωs = ωi = ωp and |k| = kp, that is on
the |k| = kp parametric luminescence ring.
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FIG. 2: QMC results for the in-cavity photon population nk.
Pump amplitude Fp/γ = 5 µm−1 (just below the parametric
instability threshold). Number of Monte Carlo configurations
: 330. The two rectangles denote the areas where the sig-
nal and idler are integrated. Cavity parameters: ~ΩR = 2.5
meV, ~ω0

C = 1400 meV, ~ωX = 1400.5 meV, kz =20 µm−1,
~ΩR = 2.5 meV, ~γC,X = ~γ = 0.1 meV, ~ g = 1.10−2

meV.µm−2. Pump parameters: kp = 0.6981 µm−1, ωp =
ωLP (kp) = 1398.2 meV. Integration box size Lx = Ly = 90
µm with nx = ny = 64 points; integration time step dt = 1.7
fs. Using such a short time step has been necessary in order
to obtain sufficient numerical precision on fourth-order field
correlation functions.

Fig. 2 shows the numerical results for the stationary
state photon population inside the cavity for a value of
the pump power below the parametric oscillation thresh-
old: the ring-shaped parametric luminescence pattern is
apparent. The interaction-induced blue shift of the po-
lariton modes is responsible for the ring radius being
slightly smaller than kp. Other interesting features can
be observed in addition to the main ring: the strong
spots at k = ±3kp are due to four-wave mixing processes
(kp,kp) → (±3kp,∓kp); because of the stimulated na-
ture of the underlying process, these spots fully inherit
the coherence of the pump beams. Some luminescence is
also observed along the x-axis in the vicinity of kp. Para-
metric scattering processes involving polaritons from the
same pump beam (kp,kp) → (kp + δk,kp − δk) with

|δk| ≪ |kp| are responsible for this emission. As the pump
beams are not tuned at the so-called magic angle, this
emission is much weaker than the one on the ring.

In the following, we will focus our attention on signal-
idler pairs with wavevectors on the ring, and close to the
y-axis (kx ≃ 0). To minimize discretization effects, we
will average the signal/idler observables on the rectan-
gular areas Ds,i sketched in Fig. 2, which indeed contain
quite a number of pixels. The corresponding photon pop-
ulation operators N̂s,i are defined as:

N̂s,i =
∑

k∈Ds,i

â†kâk = NDn̂s,i , (8)

where ND is the number of modes inside Ds,i and n̂s,i

are the average photon population operators. In term of
the stochastic field, these latter read:

〈n̂s,i〉 =
1

ND

∑

k∈Ds,i

(

|αk|2 −
1

2

)

. (9)
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FIG. 3: Left panel: QMC results for the density of the pump
excitons ρp = 〈b̂†kp

b̂kp 〉/(LxLy). Right panel: signal/idler pho-

ton populations ns,i in the presence (solid line) or absence
(dashed line) of the disordered potential. Same cavity and
integration parameters as in Fig.2.

The density of pump excitons ρp = 〈b̂†±kp
b̂±kp

〉/(LxLy)

and the signal/idler populations ns,i are shown as a func-
tion of pump power in the left and right panels of Fig. 3
respectively. As previously discussed13,25, the pump den-
sity ρp smoothly increases up to the threshold for para-
metric oscillation. The sub-linear dependence on power
stems from the optical limiting effect due to the blue-
shift of the ±kp modes by the repulsive interactions8.
Around the threshold at Fp/γ ≈ 5.75µm−1, ρp shows a
downward kink, while the signal/idler populations have
a sudden increase. For the realistic parameters used here,
note how the density of excitons at the instability thresh-
old remains moderate, and much lower than the exciton
saturation density, ρkp

< 109 cm−2 ≪ ρsat. This shows
the efficiency of the considered parametric process.

In Fig. 4, we can see the temporal spontaneous build-
up of the signal and idler luminescence starting from the
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FIG. 4: QMC results for 〈n̂s〉 (Solid line) and 〈n̂i〉 (cir-
cles) as a function of time (ps) for various pump amplitudes
across the parametric oscillation threshold: Fp/γ = 5 µm−1

(330 configurations), Fp/γ = 5.5 µm−1 (340 configurations),
Fp/γ = 6 µm−1 (180 configurations) and Fp/γ = 9 µm−1 (60
configurations). Same cavity and integration parameters as in
Fig.2.

vacuum fluctuations. For Fp/γ = 5µm−1, the popula-
tion of the signal/idler modes is still small ns,i ≪ 1,
while stimulated parametric scattering starts to be effec-
tive for Fp/γ = 5.5µm−1 when the occupation number is
comparable or larger than 1. The parametric oscillation
threshold has already been crossed for Fp/γ = 6µm−1.
While the emission ring below threshold has the almost
homogeneous intensity profile shown in Fig. 2, a symme-
try breaking takes place above the threshold: a few modes
are selected by mode competition effects, and a macro-
scopic population concentrates into them, as shown in
Fig.5. It is interesting to note that that the number of
Monte Carlo configurations needed for obtaining a given
precision in the configuration average strongly depends
on the regime under examination: as expected, much less
simulations are required above the threshold.

B. In the presence of static disorder

The results in Fig. 2, 4 and 5 have been obtained in
the absence of static disorder, i.e. for VC = VX = 0. An
arbitrary potential can be easily included in our calcu-
lations. As a specific example, we have considered the
disordered photonic potential reported in Fig. 6, consist-
ing of a random ensemble of photonic point defects26 .
The corresponding emission pattern is shown in Fig. 7
for the same pump parameters as in the clean system of
Fig. 2. The main effect of the disorder appears to be a
significantly enhanced intensity on the luminescence ring.
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FIG. 5: QMC results for the in-cavity photon population nk

for a pump amplitude above the parametric oscillation thresh-
old Fp/γ = 6 µm−1. Number of Monte Carlo configurations :
180. Same cavity and integration parameters as in Fig.2.
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FIG. 6: Disordered photonic potential (in meV/~) used for
the simulations of Fig. 3,7, and 10.

This occurs because of the resonant Rayleigh scattering
of each of the pumps. Note also the weak “eight”-shaped
pattern19 due to the parametric amplification of the res-
onant Rayleigh scattering ring.

The signal population as a function of the pump power
is plotted in the right panel of Fig. 3: below threshold,
the photon population in the presence of disorder is much
larger than in the clean system. On the other hand, the
difference between the two populations is much less im-
portant above threshold when the non-linear stimulated
parametric scattering dominates over the linear Rayleigh
scattering processes. Despite the very different low inten-
sity behaviour, the threshold is reached in both cases at
values close to Fp/γ ≃ 5.5µm−1.
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FIG. 7: QMC result for the in-cavity photon population nk

in the presence of the disordered potential shown in Fig. 6.
The image saturates the gray scale. Pump amplitude Fp/γ =
5µm−1. Number of Monte Carlo configurations : 50. Same
cavity and integration parameters as in Fig.2.

III. QUANTUM CORRELATIONS

In the present section we study the correlation prop-
erties of the signal and idler emissions. For the sake of
simplicity, we restrict our attention here to those fluc-
tuations which are associated to the intrinsic losses of
the parametrically emitting system, and we neglect all
other possible noise sources that may appear in actual
experimental setups, e.g. pump intensity fluctuations. To
characterize the quantum nature of the correlations23 be-
tween the signal and idler modes, it is useful to consider
the quantity N̂± = N̂s± N̂i i.e. the sum and difference of
the signal and idler photon population. The correspond-
ing normalized noise σ± reads:

σ± =
〈N̂2

±〉 − 〈N̂±〉
2

〈N̂+〉
=

〈N̂2
s 〉 − 〈N̂s〉

2 + 〈N̂2
i 〉 − 〈N̂i〉

2 ± 2
(

〈N̂iN̂s〉 − 〈N̂s〉〈N̂i〉
)

〈N̂i〉 + 〈N̂s〉
. (10)

Hence, the fourth-order moments of the fields 〈N̂jN̂k〉 =
∑

k∈Dj,k′∈Dk
〈n̂kn̂k′〉 (where j, k ∈ {s, i}) play a key-role in

the determination of the quantum behaviour of the system. In terms of the averaged stochastic quantities we have:

〈N̂2
j 〉 =

1

6

∑

k∈Dj

〈

â†kâ
†
kâkâk + â†kâkâ

†
kâk + â†kâkâkâ

†
k + âkâ

†
kâ

†
kâk + âkâ

†
kâkâ

†
k + âkâkâ

†
kâ

†
k

〉

−
1

2
〈â†kâk + âkâ

†
k〉

+
∑

k,k′∈Dj

〈n̂k〉〈n̂k′〉 −
∑

k∈Dj

〈n̂k〉〈n̂k〉

=
∑

k∈Dj

(

|αk|4 − |αk|2
)

+





∑

k∈Dj

(

|αk|2 −
1

2

)





2

−
∑

k∈Dj

(

|αk|2 −
1

2

)2

, (11)

with j = (i, s). The intensity correlation between signal and idler modes is:

〈N̂sN̂i〉 =
1

4

∑

k∈Ds

k′∈Di

〈

(â†kâk + âkâ
†
k − 1) (â†k′ âk′ + âk′ â†k′ − 1)

〉

(12)

=
∑

k∈Ds

∑

k′∈Di

|αk|2 |αk′ |2 −
ND

2

(

∑

k∈Ds

|αk|2 +
∑

k′∈Di

|αk′ |2 −
ND

2

)

.

For uncorrelated and shot-noise limited signal and idler
beams, one would have σ± = 1: this value is the so-
called Standard Noise Limit24. Having σ− < 1 means
that non-classical correlations exist between signal and
idler, in particular a squeezing of the difference intensity
noise27,28. As the polariton states are half-photon half-

exciton, the optimal noise reduction of the photon field is
reduced by half with respect to an ideal χ(2) purely pho-
tonic parametric oscillator system29; noise reduction does
not concern in fact the photon field taken independently,
but rather the whole polariton field. As long as we neglect
multiple scattering and disorder effects, this is the main



6

difference compared to standard χ(2) parametric oscilla-
tors; an analytical model for these issues will be provided
in Sec.IV. Note that throughout all the present paper
we are interested in one-time correlations: the difference
noise is therefore integrated over all the frequencies and
no frequency filtering is considered. Some frequency fil-
tering around ω = ωp would purify the squeezing as the
quantum correlations are largest around this value of the
frequency30.
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FIG. 8: Left panel: QMC results for the time-evolution of the
normalized photonic sum and difference noises σ± in the ab-
sence of disorder. Right panel: in-cavity photon population nk

at t = 1800 ps. Pump amplitude Fp/γ = 5 µm−1. Number of
Monte Carlo configurations: 330. Same cavity and integration
parameters as in Fig.2.

In Fig. 8 we have plotted the time dependance of the
normalized noises σ± for a given Monte Carlo realization
and in the absence of disorder. The stationary-state av-
erage values for the same quantities are plotted in Fig.
9 as a function of the pump intensity. Quantum correla-
tions σ− < 1 exist in the difference noise at low intensi-
ties, while it monotonically increases towards σ− = 1 for
higher intensities, making the signal/idler correlations al-
most purely classical well above threshold27. No specific
feature is found in this quantity at the threshold.

On the other hand, the sum noise σ+ is always above
the standard noise limit, and shows a sudden increase
at the parametric threshold. The fact that well above
the threshold it does not go back to the standard noise
is due to the presence of several competing parametric
oscillation modes. Depending on whether the oscillating
modes lay inside or outside the selected regions Ds,i, the
signal/idler populations ns,i vary between 0 and their
maximum value, while remaining almost equal to each
other. This implies that the sum noise σ+ is large, of
the order of the signal/idler populations ns,i while the
difference noise σ− remains small.

In Fig.10, we have analyzed the sum and difference
noise in the presence of a disordered potential. For the
same value of pump intensity, the difference noise σ−

is now somehow larger than in the absence of disorder:
the resonant Rayleigh scattering creates in fact unpaired
photons into the luminescence ring and deteriorates the
pair correlations between the signal and the idler. For
very low intensities, the dominant contribution comes
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FIG. 9: QMC results for the normalized photonic sum and
difference noises σ± as a function of the pump power in the
absence of disorder. The difference noise is fitted by a poly-
nomial curve, while the line in the plot for σ+ is a guide for
the eye. Same cavity and integration parameters as in Fig.2.

from the Rayleigh scattering processes implying that
both the sum and the difference noises have to tend
toward the Standard Noise Limit σ± = 1. Because of the
competition between the Rayleigh and the parametric
scattering, the difference noise σ− attains its minimum
in the vicinity of the threshold and then increases
because of the increasing noise of the two beams. As
disorder is able to mix the modes respectively inside and
outside the selected regions Ds,i, the difference noise
can grow above σ− = 1 at high pump powers. For the
same reason, the sum noise σ+ has a weaker growth
above the threshold than in the absence of disorder. This
physical interpretation of the role of the disorder has
been confirmed by several other simulations (not shown)
performed with different realizations of the disordered
potential.
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FIG. 10: QMC results for σ∓ as a function of the pump in-
tensity in the presence of disorder. The lines are a guide for
the eye. Same cavity and integration parameters as in Fig.2.
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IV. SIMPLIFIED ANALYTICAL MODEL

The aim of this section is to compare the results of the
complete Quantum Monte-Carlo calculations to a simpli-
fied input-output analytical model based on a lineariza-
tion of the Hamiltonian. This is done by treating the
intense pump as a classical, undepleted, field, i.e. replac-
ing the pump mode operators with their mean-field ex-
pectation values. Obviously, this approximation is valid
only well below the parametric oscillation threshold. Con-
centrating our attention on those processes which satisfy
the phase-matching condition and neglecting all the non-
resonant others, we can write the linearized Hamiltonian
in the following, simplified form:

H =
∑

k 6=kp

[

~ωC(k)â†kâk + ~ω̃X b̂
†
kb̂k

+ ~ΩR

(

b̂†kâk + â†kb̂k

)

+~

(

b̂†kb̂
†
−kκ+ b̂kb̂−kκ

∗
)]

, (13)

where b̂k is the exciton creation operator, ω̃X = ω0
X +

2g
LxLy

(|P1|
2 + |P2|

2) is the blue-shifted exciton frequency

because of interactions, and κ = g

LxLy
P1P2 is the ef-

fective parametric interaction constant in terms of the

pump fields P1,2e
−iωpt = 〈b̂±kp

(t)〉. Taking the standard
vacuum as the initial state of the photon and exciton
fields, the expectation values of the quantum Langevin
forces are:

〈F̃cav,k[ω]F̃ †
cav,k′ [ω]〉 = 4πΓcav[ω]δ(ω − ω′)δk,k′ ,(14)

〈F̃exc,k[ω]F̃ †
exc,k′ [ω]〉 = 4πΓexc[ω]δ(ω − ω′)δk,k′ ,(15)

where Γj [ω] is the complex broadening due to the cou-
pling to the external bath. Since the relevant spectral
domain in the degenerate parametric process is con-
centrated around ωp, we are allowed to simplify the
treatment by taking frequency independent linewidth
Γph,exc[ω] = γC,X/2. The quantum Langevin equations
in frequency space read:

Mk,ω,ωp









ãk[ω]

b̃k[ω]

ã†−k[2ωp − ω]

b̃†−k[2ωp − ω]









= −i











F̃cav,k[ω]

F̃exc,k[ω]

F̃ †
cav,−k[2ωp − ω]

F̃ †
exc,−k[2ωp − ω]











,

(16)

with the matrix Mk,ω,ωp
defined for i = X,C as:

Mk,ω,ωp
=







∆C(ω) − iγC/2 ΩR 0 0
ΩR ∆X(ω) − iγX/2 0 κ
0 0 −∆C(ω − 2ωp) − iγC/2 −ΩR

0 −κ∗ −ΩR −∆X(ω − 2ωp) − iγX/2






, (17)

in terms of ∆i(ω) = ωi − ω .
The relation between the time dependent and fre-

quency dependent operators is:

âk(t) =

∫

dω

2π
ãk[ω]eiωt, (18)

where ãk[ω] is the component at ω of the photonic de-
struction operator for the k-mode. In the following, we
will call Gk,ω,ωp

= −iM−1
k,ω,ωp

. The signal photon popu-

lation operator n̂s(t) inside the cavity can be written as:

N̂s(t) =
∑

k∈Ds

∫∫

dω

2π

dω′

2π
ã†k[ω] ãk[ω′] e−i(ω−ω′)t , (19)

which leads to:

〈Ns〉 =
∑

k∈Ds

∫

dω

2π

(

γC |G13|
2[ω] + γX |G14|

2[ω]
)

. (20)

To calculate the sum and difference noise, the second
order momenta 〈N̂2

s 〉−〈N̂s〉
2, 〈N̂2

i 〉−〈N̂i〉
2 and 〈N̂iN̂s〉+

〈N̂sN̂i〉 − 2〈N̂i〉〈N̂s〉 are needed. After some algebra, we
obtain the final expressions (for j = (s, i)):

〈N̂2
j 〉 − 〈N̂j〉

2 =
∑

k∈Dj

∫

dω

2π
(γC |G13|

2 + γX |G14|
2)[ω]

∫

dω′

2π
(γC |G11|

2 + γX |G12|
2)[ω′] (21)

〈N̂sN̂i〉 − 〈N̂i〉〈N̂s〉 =

∫∫

dω1dω2

(2π)2

∑

k∈Ds

(γCG
∗
11[k, 2ωp − ω1]G

∗
13[−k, ω1] + γXG∗

12[k, 2ωp − ω1]G
∗
14[−k, ω1])

(γCG11[k, 2ωp − ω2]G13[−k, ω2] + γXG12[k, 2ωp − ω2]G14[−k, ω2]) . (22)

The results for σ− and σ+ are plotted in Fig. 11. The qualitative similarities between these results and the
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FIG. 11: Analytical results for the photonic difference and
sum noises σ± as a function of the pump exciton density ρp

in the absence of disorder. Same cavity and integration pa-
rameters as in Fig.2. ~ωp = ~ωLP (kp) + 0.07 meV = 1398
meV and ~ω0

X = 1400.1 meV.

QMC ones (without disorder) of Fig 9 are apparent for
pump intensities up to the parametric threshold. Here,
the linearized model breaks down, as it predicts a di-
verging signal/idler intensity. Although the predictions
for the threshold pump intensity differs from the QMC
one by approximately twenty percent, still the analytic
value in the low intensity limit σ− ≃ 0.75 is well within
the (quite large) error bars of the QMC simulations with-
out disorder36. In this limit, the analytical calculation,
that neglects interactions between the signal and idler
modes, becomes indeed exact and provides a more pre-

cise estimation than the QMC calculation. As we have
already mentioned, partition noise due to the half pho-
ton half exciton nature of the polaritons is responsible for
a significantly larger value of σ− than in standard χ(2)

parametric emitters29. While in the QMC calculations
the inclusion of static disorder has been done straight-
forwardly, the simplified analytical model can not be ex-
tended easily to the disorder case, and, most of all, it
would lose all its simplicity.

V. CONCLUSION

In conclusion, we have presented a quantum Monte
Carlo study of the quantum correlations in the ring-
shaped parametric luminescence from semiconductor mi-
crocavities in the strong exciton-photon coupling regime.
Our results suggest that even in presence of multiple scat-
tering, realistic losses and static disorder, the signal and
idler beams maintain a significant amount of quantum
correlations. The dependance of the intensity quantum
correlation on the pump intensity has been characterized
across the parametric instability threshold, showing the
regime where the non-classical features are maximized.
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Diederichs, E. Giacobino, J-Ph. Karr, C. Leyder, N. Reg-
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