32 research outputs found

    Neonatal Diabetes Mellitus.

    Get PDF
    Neonatal Diabetes (ND) mellitus is a rare genetic disease (1 in 90,000 live births). It is defined by the presence of severe hyperglycaemia associated with insufficient or no circulating insulin, occurring mainly before 6 months of age and rarely between 6 months and 1 year. Such hyperglycaemia requires either transient treatment with insulin in about half of cases, or permanent insulin treatment. The disease is explained by two major groups of mechanism: malformation of the pancreas with altered insulin-secreting cells development/survival or abnormal function of the existing pancreatic β cell. The most frequent genetic causes of neonatal diabetes mellitus with abnormal β cell function are abnormalities of the 6q24 locus and mutations of the ABCC8 or KCNJ11 genes coding for the potassium channel in the pancreatic β cell. Other genes are associated with pancreas malformation or insufficient β cells development or destruction of β cells. Clinically, compared to patients with an ABCC8 or KCNJ11 mutation, patients with a 6q24 abnormality have lower birth weight and height, are younger at diagnosis and remission, and have a higher malformation frequency. Patients with an ABCC8 or KCNJ11 mutation have neurological and neuropsychological disorders in all those tested carefully. Up to 86% of patients who go into remission have recurrent diabetes when they reach puberty, with no difference due to the genetic origin. All these results reinforce the importance of prolonged follow-up by a multidisciplinary pediatric team, and later doctors specializing in adult medicine. 90% of the patients with an ABCC8 or KCNJ11 mutation as well as those with 6q24 anomalies are amenable to a successful switch from insulin injection to oral sulfonylureas

    Case report: an unexpected link between partial deletion of the SHANK3 gene and Heller’s dementia infantilis, a rare subtype of autism spectrum disorder

    Get PDF
    International audienceAbstractBackgroundDeletions and mutations involving the SHANK3 gene lead to a nonspecific clinical presentation with moderate to profound intellectual disability, severely delayed or absent speech, and autism spectrum disorders (ASD).Better knowledge of the clinical spectrum of SHANK3 haploinsufficiency is useful to facilitate clinical care monitoring and to guide molecular diagnosis, essential for genetic counselling.Case presentationHere, we report a detailed clinical description of a 10-year-old girl carrying a pathogenic interstitial 22q13.3 deletion encompassing only the first 17 exons of SHANK3.The clinical features displayed by the girl strongly suggested the diagnosis of dementia infantilis, described by Heller in 1908, also known as childhood disintegrative disorder.ConclusionOur present case confirms several observations according to which regression may be part of the clinical phenotype of SHANK3 haploinsufficiency. Therefore, we think it is crucial to look for mutations in the gene SHANK3 in patients diagnosed for childhood disintegrative disorder or any developmental disorder with a regressive pattern involving social and communicative skills as well as cognitive and instinctual functions, with onset around 3 years

    Executive difficulties in Developmental Coordination Disorder: Methodological issues and future directions

    Get PDF
    Motor skills and cognition have often been studied separately, but there is increasing understanding of the close relationship between these abilities over development. Motor coordination difficulties are central to the diagnosis of Developmental Coordination Disorder (DCD), and recent evidence suggests that certain cognitive processes, known as ‘executive functions’, may be affected in individuals with this neurodevelopmental disorder. In this article, we review the research concerning executive functions in DCD, considering behavioural, neuroimaging and questionnaire studies of a range of processes. We highlight methodological issues relating to our current understanding of executive functioning difficulties in DCD, including problems with interpretation of results based on the tasks used. We suggest future directions for research in this area, including the relationship of laboratory research to interventions within ‘real-world’ contexts
    corecore