7,510 research outputs found
First-Pass Meconium Samples from Healthy Term Vaginally-Delivered Neonates : An Analysis of the Microbiota
Acknowledgments The authors would like to thank the parents who consented to provide samples with limited notice at an emotional and stressful time. This work was supported entirely from personal donations to the neonatal endowments fund at Aberdeen Maternity Hospital and we thank families for their continued generosity, year-on-year. The Rowett Institute of Nutrition and Health receives funding from the Scottish Government (SG-RESAS). Funding: This work was funded from NHS Grampian Neonatal Endowments. The Rowett Institute receives funding from the Rural and Environmental Science and Analytical Services programme of the Scottish Government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Weak antilocalization in quasi-two-dimensional electronic states of epitaxial LuSb thin films
Observation of large non-saturating magnetoresistance in rare-earth
monopnictides has raised enormous interest in understanding the role of its
electronic structure. Here, by a combination of molecular-beam epitaxy,
low-temperature transport, angle-resolved photoemssion spectroscopy, and hybrid
density functional theory we have unveiled the bandstructure of LuSb, where
electron-hole compensation is identified as a mechanism responsible for large
magnetoresistance in this topologically trivial compound. In contrast to bulk
single crystal analogues, quasi-two-dimensional behavior is observed in our
thin films for both electron and holelike carriers, indicative of dimensional
confinement of the electronic states. Introduction of defects through growth
parameter tuning results in the appearance of quantum interference effects at
low temperatures, which has allowed us to identify the dominant inelastic
scattering processes and elucidate the role of spin-orbit coupling. Our
findings open up new possibilities of band structure engineering and control of
transport properties in rare-earth monopnictides via epitaxial synthesis.Comment: 20 pages, 12 figures; includes supplementary informatio
Drug overdose: a wake up call! Experience at a tertiary care centre in Karachi, Pakistan
OBJECTIVE: To study the characteristics of patients admitted with drug overdose caused either by accidental overdose of the prescribed medications or as an act of deliberate self harm (DSH) at a tertiary care hospital in Karachi, Pakistan.METHODS: A retrospective case series review was conducted at the Aga Khan University Hospital from January 2002 to October 2006. Three hundred and twenty four adult patients admitted with drug overdose were included in the study.RESULTS: Our sample group revealed mean age of 36.2 +/- 17.0 years, more females (59%), housewives (34%), and students (20%). Fifty six percent of patients committing DSH were married (p = 0.001), 81% needed in-patient psychiatric services (p = 0.016) of whom a significantly high number (38%) refused it. Domestic and social issues were rated highest among DSH group (p = 0.003), depression among females was common (p = 0.028) and Benzodiazepines (41%) was the most frequently used drug (p = 0.021). Sub-group analysis of accidental overdoses revealed mean age of 45.6 +/- 19.6 years, single (75.4%) and males (54.1%). Drugs used were mainly Benzodiazepines (18%) followed by Opioids (11%), Antiepileptics (10%) and Warfarin (10%).CONCLUSION: Our study showed that depressed housewives are at greater risk for DSH. Domestic and social issues were rated highest and Benzodiazepines were the most commonly used agents. Most of our patients refused inpatient psychiatric treatment leading us to believe that general awareness of psychiatric illnesses is imperative in our community. High number of accidental overdoses is alarming in older, single males convincing us to believe that existing pharmacy system needs further evaluation and modification
Pore structural characterization of fuel cell layers using integrated mercury porosimetry and computerized X-ray tomography
The pore structure of the cathode catalyst layer of proton-exchange membrane (PEM) fuel cells is a major factor influencing cell performance. The nanostructure of the catalyst layer has been probed using a novel combination of mercury porosimetry with computerized X-ray tomography (CXT), even though the nanopores were below the nominal CXT resolution. The method allows probing of the macroscopic spatial variability in the accessibility of the nanostructure. In particular, mercury entrapment within the catalyst layer showed a pronounced regular spatial patterning corresponding to the already higher X-ray absorbing regions of the fresh catalyst layer. The initial, greater X-ray absorption was due to a higher local concentration of carbon-supported platinum catalyst. This was due to segregation of ionomer away from these areas caused by the particular screen printing catalyst layer deposition method used, which both enhanced the accessibility of the origin regions and, concomitantly, reduced the accessibility of the destination regions
Web-based monitoring tools for Resistive Plate Chambers in the CMS experiment at CERN
The Resistive Plate Chambers (RPC) are used in the CMS experiment at the trigger level and also in the standard offline muon reconstruction. In order to guarantee the quality of the data collected and to monitor online the detector performance, a set of tools has been developed in CMS which is heavily used in the RPC system. The Web-based monitoring (WBM) is a set of java servlets that allows users to check the performance of the hardware during data taking, providing distributions and history plots of all the parameters. The functionalities of the RPC WBM monitoring tools are presented along with studies of the detector performance as a function of growing luminosity and environmental conditions that are tracked over time
Eukaryotic translation initiation factor 4All contributes to microRNA-122 regulation of hepatitis C virus replication
Hepatitis C virus (HCV) is a positive sense RNA virus that persistently infects human liver, leading to cirrhosis and hepatocellular carcinoma. HCV replication requires the liver-specific microRNA-122 (miR-122). In contrast to canonical miRNA-mediated repression via 3’UTR sites, miR-122 positively regulates HCV replication by a direct interaction with the 5’ untranslated region (UTR) of the viral RNA. The protein factor requirements for this unusual miRNA regulation remain poorly understood. Here, we identify eIF4AII, previously implicated in miRNA-mediated repression via 3’UTR sites, as a host factor that is important for HCV replication. We demonstrate that eIF4AII interacts with HCV RNA and that this interaction is miR-122-dependent. We show that effective miR-122 binding to, and regulation of, HCV RNA are reduced following eIF4AII depletion. We find that the previously identified HCV co-factor CNOT1, which has also been implicated in miRNA-mediated repression via 3’UTR sites, contributes to regulation of HCV by eIF4AII. Finally, we show that eIF4AI knockdown alleviates the inhibition of HCV replication mediated by depletion of either eIF4AII or CNOT1. Our results suggest a competition effect between the eIF4A proteins to influence HCV replication by modulation of miR-122 function
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
- …
