703 research outputs found

    Static response and Love numbers of Schwarzschild black holes

    Get PDF
    We derive the quadratic action for the physical degrees of freedom of massless spin-0, spin-1, and spin-2 perturbations on a Schwarzschild-(A)dS background in arbitrary dimensions. We then use these results to compute the static response of asymptotically flat Schwarzschild black holes to external fields. Our analysis reproduces known facts about black hole Love numbers-in particular that they vanish for all types of perturbation in four spacetime dimensions-but also leads to new results. For instance, we find that neutral Schwarzschild black holes polarize in the presence of an electromagnetic background in any number of spacetime dimensions except four. Moreover, we calculate for the first time black hole Love numbers for vector-type gravitational perturbations in higher dimensions and find that they generically do not vanish. Along the way, we shed some light on an apparent discrepancy between previous results in the literature, and clarify some aspects of the matching between perturbative calculations of static response on a Schwarzschild background and the point-particle effective theory.</p

    impact of non gaussian electron energy heating upon the performance of a seeded free electron laser

    Get PDF
    E. Ferrari, E. Allaria, W. Fawley, L. Giannessi, Z. Huang, G. Penco, and S. Spampinati Elettra-Sincrotrone Trieste S.C.p.A. di interesse nazionale, Strada Statale 14-km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy Universita degli Studi di Trieste, Dipartimento di Fisica, Piazzale Europa 1, 34127 Trieste, Italy SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA Enea, via Enrico Fermi 45, 00044 Frascati, Roma, Italy Laboratory of Quantum Optics, University of Nova Gorica, 5000 Nova Gorica, Slovenia Department of Physics, University of Liverpool, Oxford Street L69 7ZE, Liverpool, United Kingdom Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane WA4 4AD, Daresbury, Warrington, United Kingdom (Received 11 October 2013; published 21 March 2014

    Two-colour generation in a chirped seeded Free-Electron Laser

    Full text link
    We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments

    Different gene expression modulation is the major effect fue to shear stress and stent application in huvecs model: preliminary results

    Get PDF
    Although it is known that disturbed shear stress may cause endothelial damage, the mechanism by which a stent procedure may affect the endothelium is not yet fully clarify. We present the preliminary data on gene expression analysis of human endothelial cells in a laminar flow bioreactor (LFB) system submitted to different physical (flow changes) and/or mechanical (stent application) stimuli. Our preliminary results show that low shear stress together with stent procedure are the experimental conditions that mainly modulate the highest number of genes in human endothelial model. Those genes belong to pathways specifically involved in the endothelial dysfunctio

    7-Azaindole-1-carboxamides as a new class of PARP-1 inhibitors

    Get PDF
    7-Azaindole-1-carboxamides were designed as a new class of PARP-1 inhibitors. The compounds displayed a variable pattern of target inhibition profile that, in part, paralleled the antiproliferative activity in cell lines characterized by homologous recombination defects. A selected compound (1l; ST7710AA1) showed significant in vitro target inhibition and capability to substantially bypass the multidrug resistance mediated by Pgp. In antitumor activity studies against the MX1 human breast carcinoma growth in nude mice, the compound exhibited an effect similar to that of Olaparib in terms of tumor volume inhibition when used at a lower dose than the reference compound. Treatment was well tolerated, as no deaths or significant weight losses were observed among the treated animals

    Implementation of Radio-Frequency Deflecting Devices for Comprehensive High-Energy Electron Beam Diagnosis

    Get PDF
    In next-generation light sources, high-brightness electron beams are used in a free-electron laser configuration to produce light for use by scientists and engineers in numerous fields of research. High-brightness beams are described for such light sources as having low transverse and longitudinal emittances, high peak currents, and low slice emittance and energy spread. The optimal generation and preservation of such high-brightness electron beams during the acceleration process and propagation to and through the photon-producing element is imperative to the quality and performance of the light source. To understand the electron beam's phase space in the accelerating section of a next-generation light source machine, we employed radio-frequency cavities operating in a deflecting mode in conjunction with a magnetic spectrometer and imaging system for both low (250 MeV) and high (1.2 GeV) electron energies. This high-resolution, high-energy system is an essential diagnostic for the optimization and control of the electron beam in the FERMI light source generating fully transversely and longitudinally coherent light in the VUV to soft x-ray wavelength regimes. This device is located at the end of the linear accelerator in order to provide the longitudinal phase space nearest to the entrance of the photon-producing beam-lines. Here, we describe the design, fabrication, characterization, commissioning, and operational implementation of this transverse deflecting cavity structure diagnostic system for the high-energy (1.2 GeV) regime

    Contact-force monitoring increases accuracy of right ventricular voltage mapping avoiding “false scar” detection in patients with no evidence of structural heart disease

    Get PDF
    Purpose: Electroanatomical mapping (EAM) could increase cardiac magnetic resonance imaging (CMR) sensitivity in detecting ventricular scar. Possible bias may be scar over-estimation due to inadequate tissue contact. Aim of the study is to evaluate contact-force monitoring influence during EAM, in patients with idiopathic right ventricular arrhythmias. Methods: 20 pts (13 M; 43 ± 12 y) with idiopathic right ventricular outflow tract (RVOT) arrhythmias and no structural abnormalities were submitted to Smarttouch catheter Carto3 EAM. Native maps included points collected without considering contact-force. EAM scar was defined as area ≥1 cm2 including at least 3 adjacent points with signal amplitude (bipolar &lt;0.5 mV, unipolar 3,5 mV), surrounded by low-voltage border zone. EAM were re-evaluated offline, removing points collected with contact force &lt;5 g. Finally, contact force-corrected maps were compared to the native ones. Results: An EAM was created for each patient (345 ± 85 points). After removing poor contact points, a mean of 149 ± 60 points was collected. The percentage of false scar, collected during contact force blinded mapping compared to total volume, was 6.0 ± 5.2% for bipolar scar and 7.1 ± 5.9% for unipolar scar, respectively. No EAM scar was present after poor contact points removal. Right ventricular areas analysis revealed a greater number of points with contact force &lt; 5 g acquired in free wall, where reduced mean bipolar and unipolar voltage were recorded. Conclusions: To date this is the first work conducted on structurally normal hearts in which contact-force significantly increases EAM accuracy, avoiding “false scar” related to non-adequate contact between catheter and tissue

    Experimental evidence of intrabeam scattering in a free-electron laser driver

    Get PDF
    Abstract The effect of multiple small-angle Coulomb scattering, or intrabeam scattering (IBS) is routinely observed in electron storage rings over the typical damping time scale of milliseconds. So far, IBS has not been observed in single pass electron accelerators because charge density orders of magnitude higher than in storage rings would be needed. We show that such density is now available at high brightness electron linacs for free-electron lasers (FELs). We report measurements of the beam energy spread in the FERMI linac in the presence of the microbunching instability, which are consistent with a revisited IBS model for single pass systems. We also show that neglecting the hereby demonstrated effect of IBS in the parameter range typical of seeded VUV and soft x-ray FELs, results in too conservative a facility design, or failure to realise the accessible potential performance. As an example, an optimization of the FERMI parameters driven by an experimentally benchmarked model, opens the door to the extension of stable single spectral line emission to the water window (2.3–4.4 nm), with far-reaching implications for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences, and including nonlinear x-ray optics based on the four-wave-mixing approach.</jats:p

    Where does Cosmological Perturbation Theory Break Down?

    Get PDF
    We apply the effective field theory approach to the coupled metric-inflaton system, in order to investigate the impact of higher dimension operators on the spectrum of scalar and tensor perturbations in the short-wavelength regime. In both cases, effective corrections at tree-level become important when the Hubble parameter is of the order of the Planck mass, or when the physical wave number of a cosmological perturbation mode approaches the square of the Planck mass divided by the Hubble constant. Thus, the cut-off length below which conventional cosmological perturbation theory does not apply is likely to be much smaller than the Planck length. This has implications for the observability of "trans-Planckian" effects in the spectrum of primordial perturbations.Comment: 25 pages, uses FeynM
    • …
    corecore