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Abstract—In next-generation light sources, high-brightness
electron beams are used in a free-electron laser configuration to
produce light for use by scientists and engineers in numerous fields
of research. High-brightness beams are described for such light
sources as having low transverse and longitudinal emittances, high
peak currents, and low slice emittance and energy spread. The op-
timal generation and preservation of such high-brightness electron
beams during the acceleration process and propagation to and
through the photon-producing element is imperative to the quality
and performance of the light source. To understand the electron
beam’s phase space in the accelerating section of a next-genera-
tion light source machine, we employed radio-frequency cavities
operating in a deflecting mode in conjunction with a magnetic
spectrometer and imaging system for both low (250MeV) and high
(1.2 GeV) electron energies. This high-resolution, high-energy
system is an essential diagnostic for the optimization and control
of the electron beam in the FERMI light source generating fully
transversely and longitudinally coherent light in the VUV to soft
x-ray wavelength regimes. This device is located at the end of
the linear accelerator in order to provide the longitudinal phase
space nearest to the entrance of the photon-producing beam-lines.
Here, we describe the design, fabrication, characterization, com-
missioning, and operational implementation of this transverse
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deflecting cavity structure diagnostic system for the high-energy
(1.2 GeV) regime.
Index Terms—Electron accelerators, electron beam deflection,

free-electron lasers, particle beam measurements.

I. INTRODUCTION

T RANSVERSE mode radio-frequency (RF) deflectors
have been employed in particle accelerators since the

early 1960s in high-energy physics machines to assist with
pulse selection [1]–[7]. With the advent of new machines, such
as next-generation light sources, whose beams have exceed-
ingly short pulse durations and are of high-brightness, these
deflectors are now being used to assist with the characterization
of the electron beams [8]–[15]. Recently, the first fully coherent
high-gain harmonic-generation (HGHG) free-electron laser
(FEL), FERMI, has been successfully commissioned from the
VUV to soft x-rays, and is now a facility open to scientists and
engineers [16], [17]. The FERMI linac is based on a re-con-
figuration and extension of the original, normal-conducting
(copper), S-band (2.998 GHz) linear accelerator, and readers
can refer to [18] for more details. In order to comprehensively
diagnose the transverse time-sliced emittance and energy
spread, and the electron bunch length to high resolution, a
transverse mode, backward traveling wave RF deflector cavity
was designed and implemented to characterize the beam at the
end of the FERMI linear accelerator with a high-resolution
spectrometer and imaging system [19]. With constraints of lim-
ited available space, limited RF power, a fixed RF frequency,
and avoiding the beam break-up instability, the implementation
of a -mode, normal conducting, high-energy RF deflector
operating at S-band was realized. Two deflecting cavities have
been designed and installed at the end of the FERMI linac,
to stretch the beam respectively in the horizontal and in the
vertical planes, as shown in the layout sketched in Fig. 1.
The vertical deflecting cavity was installed in December 2011
after successful factory acceptance in August 2011, including
microwave measurements. The horizontal deflecting cavity was
installed in July 2012 after successful factory acceptance. The
two cavities are individually powered by the same klystron and
an RF switch system is used to choose the deflection plane. The
vertical and horizontal high-energy deflectors (HERFDy and
HERFDx) are now regularly operating in the FERMI linac-end.

0018-9499 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Trieste

https://core.ac.uk/display/53744661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CRAIEVICH et al.: IMPLEMENTATION OF RADIO-FREQUENCY DEFLECTING DEVICES 211

Fig. 1. FERMI linac where the positions of the installed vertical and horizontal
high-energy deflectors are indicated by HERFDy and HERFDx, respectively.

Fig. 2. Deflection of an electron bunch by a transverse deflecting cavity. Note
the centroid remains on axis while the front and end of the bunch are spread
across the screen as the deflector’s force is opposite for the front and end of the
bunch.

Fig. 3. The beam lattice optics layout for the straight diagnostic section at the
linac’s end. The locations of the deflectors and screens are highlighted in the
plot with vertical lines.

II. LONGITUDINAL AND TRANSVERSE
PHASE SPACE CHARACTERIZATION

The goal of a transverse deflecting cavity is to “stretch” the
electron beam in the desired plane as depicted in Fig. 2. When
the RF phase is properly set, the deflecting voltage is null in
the center of the bunch (centroid) and gives a linear transverse
stretching to the head and the tail of bunch. The beam will
then strike an optical transition radiation screen whose resul-
tant image (optical signal) can be digitized for subsequent anal-
ysis. In this way, the electron beam’s longitudinal characteris-
tics are projected into the transverse plane due to the integrated
transverse force imparted on the beam by the deflecting cavity.
The formulas contained in [10] concerning the dynamics of the
bunch deflection as a function of the RF deflector parameters
and of the optical parameters are used here. Perturbations to the

ideal case due to the finite transverse emittance are also con-
sidered. In Fig. 2 the deflecting force imparts a transverse mo-
mentum on the bunch with a small kick angle as a function of
, , given by

(1)

where is the integrated deflecting voltage, the beam longi-
tudinal momentum, the free-space wave number, and
the RF phase ( at zero crossing). We assume that the
bunch length is much shorter than the RF wavelength

, namely, the kick angle is a linear function of . Notice
that the term in (1) establishes the longitudinal to
transverse coordinate correlation; the term refers to the
bunch centroid motion and it is null for . Fig. 3 shows
the FERMI beam lattice optics at the end of the linac, including
the deflectors and the downstream screen. Table I contains the
beam and optical parameters of the diagnostic section at the
linac-end that have been used for the calculations in the fol-
lowing paragraphs. The transverse position of each particle at
the screen location is then computed through by the transfer
matrix element which relates the position at the screen with the
particle vertical angular divergence at the deflector, i.e.

[20]:

(2)

where and are the vertical beta functions at the deflecting
point and the screen locations, respectively, and is
the vertical betatron phase advance from the deflecting point to
the screen. In the approximation of null transverse emittance the
RMS beam size at the screen is given by

(3)

where is the bunch length before the action of the deflection.
The transverse centroid offset at the screen is obtained by aver-
aging (2) over with the assumption of :

(4)

The calibration factor is defined as the ratio between the beam
spot at the screen ( ) and the temporal bunch length ( ) and
can be written as

(5)

By using (5), the time resolution of the measurement can be
defined as

(6)

where is the normalized beam vertical emittance, is the
Lorentz factor, and is the natural transverse beam size (i.e.,
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Fig. 4. Calibration factors , time resolutions , and induced energy spread
as a function of the integrated deflecting voltage for the HERFDy

(solid line) and the HERFDx (dashed line).

without the transverse deflection). However, as described in [21]
and [22], an RF deflecting device induces an additional energy
spread proportional to the deflecting voltage, according to the
following formula:

(7)

where keV is the electron rest energy.
Fig. 4 shows calibration factors, the time resolutions and
induced energy spread as a function of the integrated voltage
for both deflectors, obtained by using parameters listed in
Table I and considering a beam energy of 1.2 GeV. The mea-
surements of the bunch length and of the current profile can be
readily obtained from the combination of a transverse deflector
device and a screen. The particles along the bunch enter the
deflecting device at different times and therefore each experi-
ences a different phase. The difference in phase is dependent
upon its position along the bunch and the RF frequency. The
electrons along the bunch that are within the linear position of
the RF wave are now spread out into the transverse space (x
or y, depending upon the orientation of the deflector device)
proportional to their former positions in longitudinal space.
Considering a realistic bunch with a finite transverse emittance,
after deflection, the rms beam size at the screen can be esti-
mated by the quadratic summation of the natural transverse
beam size and the rms beam size at the screen:

(8)

Perturbation due to the finite emittance is negligible if
. In order to be able to measure a 1.2-GeV, 200 fs-long elec-

tron bunch with a resolution of about 15-20 fs rms, in the nom-
inal machine condition of Table I, the integrated voltage should
reach 20 MV. In this configuration, the streaked bunch on the

TABLE I
BEAM AND LATTICE (BEAM OPTICS) PARAMETERS INVOLVED IN
THE STREAKING PROCESS FOR THE DIAGNOSTIC SECTION AT THE

LINAC-END. THE ELECTRON BEAM ENERGY CAN BE VARIED FROM 1.0 TO
1.5 GEV ACCORDING TO THE FEL WAVELENGTH SETTINGS REQUIRED.

TDS: TRANSVERSE DEFLECTING STRUCTURE

screen could be sliced in ten or more time-slices and the imple-
mentation of the well known quadrupole-scan technique [23]
allows us to measure the beam time-sliced transverse emittance
and Courant-Snyder optics parameters.
Moreover, the vertical deflector in conjunction with the hori-

zontal spectrometer bending magnet, allows the reconstruction
of the longitudinal phase space. In fact, the former induces a cor-
relation between the temporal distribution and the vertical dis-
placement, while the bending magnet chromatically disperses
the electrons in the horizontal plane, making the information
about the beam energy profile available along that direction. As
a consequence the beam longitudinal phase space can be visu-
alized on a fluorescent YAG crystal plus a CCD camera system
placed downstream [24], allowing in addition characterization
of the relative time-sliced energy spread along the bunch. The
horizontal beam size measured after the dipole spectrometer
represents the electron energy deviation, which is given by

(9)

where is the horizontal momentum dispersion function at
the screen, and is the relative energy deviation before the en-
ergy spectrometer. The rms energy spread resolution is defined
as

(10)

Fig. 5 shows the optics layout of the energy spectrometer beam-
line at the linac end. For the nominal lattice with a horizontal
dispersion at the spectrometer line screen m, the
rms energy spread resolution is keV at 1.2 GeV.
The screen system resolution is m/pixel and it approxi-
mately corresponds to the minimum rms beam size that can be
measured at the screen itself. The screen resolution is compa-
rable to the optical beam size in the spectrometer beam-line, so
adding the two contributions in quadrature, we obtain a reso-
lution of about 50 keV. In time-sliced energy spread measure-
ments, it should be considered that off-axis accelerating fields
induce an additional energy spread that is inversely proportional
to the time resolution, as indicated in (7). Further, in order to
diagnose the short bunches required by FERMI, a high longitu-
dinal resolution is required, i.e., a high deflecting voltage, but
this consequently leads to a large induced energy spread that
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Fig. 5. Optics layout of the energy spectrometer at the linac’s end. The loca-
tions of the deflectors and screens are highlighted in the plot with vertical lines.

limits the energy resolution. For these reasons, the deflecting
voltage has to be chosen according to the measurement goal:
for the bunch length measurement, the high temporal resolution
is preferable despite an eventual energy spread increase, while
for the slice energy spread, it is better to operate with a lower de-
flecting voltage. Also, concerning the longitudinal phase space
measurement, the deflector has to be operated with the best com-
promise between the minimization of its effect on the energy
spread and a good temporal resolution.

III. HIGH ENERGY DEFLECTOR DESIGN

A. RF Design

As in the design of the diagnostic systems in numerous accel-
erators, the diagnostic is constrained by the overall accelerator
machine design, not the contrary. We were constrained by sev-
eral factors: frequency of the available microwave sources (Eu-
ropean S-band, 2.998 GHz), the available space in the high-en-
ergy region of the linear accelerator ( m for each de-
flector), a available RF power of 15 MW, a filling time of the
RF structure of s (the length of the RF pulse). As men-
tioned in the previous section, the integrated deflecting voltage
is required to be larger than 20 MV, in order to reach the re-
quired time resolutions for the beam parameters. We therefore
required a compact and high-impedance deflector.
It is worthwhile noting that due to the linear accelerator fre-

quency an S-band RF deflector is investigated in this paper over
an X-band or C-band deflectors, because it resulted to be able
to guarantee the specified deflecting voltage and resolution. By
the way, for higher-energy and shorter electron beam, other so-
lutions are available at different frequency, such as X-band and
C-band RF deflectors developed at SLAC [25], Radiabeam [26]
and RIKEN/Spring-8 [27]. In a traveling wave structure with
constant impedance, the integrated deflecting voltage is given
by

(11)

Fig. 6. Dispersion diagram of the three choices considered; each basic cell has
been tuned to the working frequency GHz. Dispersion diagram
of the standing wave -mode is also plotted for comparison.

where is the field attenuation constant, is the transverse
shunt impedance per unit length, is the deflector length, and

is the power-to-voltage parameter. In order to meet the
specification of the deflecting voltage, and the constraint of the
available RF power and space, the power-to-voltage param-
eter should be greater than MV/m . Considering
an available space of 2.5 m, the existing S-band deflector
structures as LOLA [28], [29] and CERN III [30] have too
low values, and precisely MV/m and

MV/m , respectively; thus it has been nec-
essary a new design. We compared the performance of three
traveling wave options to satisfy our RF and space constraints.
We examined three different constant impedance modes—the

(120 degrees), (150 degrees), and the quasi (170
degrees) and, for all cases, sensitivity analysis and other rele-
vant RF parameters were examined and scrutinized. The basic
individual cavity was designed using the HFSS electromagnetic
code [31]. The cell parameters for every choice are the cell
length , the iris radius , the cell maximum internal radius ,
and the iris thickness . For every configuration, has been
chosen in order to achieve the synchronism condition between
the electromagnetic field and the electrons traveling at the
speed of light . The iris radius and the thickness radius have to
be mm and mm, respectively, for each option.
The maximum internal radius has been varied with the code to
tune the cell to the working frequency. The dispersion diagram
of the three structure options that we have considered is plotted
in Fig. 6. Dispersion diagram of the standing wave -mode
is also plotted for comparison. By differentiating (11) with
respect to , we find that the maximum deflecting efficiency
is obtained for , as for the constant impedance
traveling wave accelerating structure. We cannot increase the
deflector length , as we have a space constraint of maximum
2.5 m for each deflector. Since the group velocity is related
to the attenuation by where is the quality
factor, we can instead optimize the deflecting mode to find the
ideal deflector efficiency by reducing . To do so, we could
not exceed the RF pulse length, , that constrains the filling
time of the traveling wave structure, given by . To
achieve the desired deflecting voltage of 20 MV:
• for the option: 62 cells and a total deflector length of
2.066 m;
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Fig. 7. Efficiency of the three traveling mode deflector options (Aqua),
(Green), and (Red), plotted with the normalized theoretical de-

flecting voltage (blue line).

TABLE II
RESULTING RF PARAMETERS FOR THE , AND OPTIONS

TO REACH AN INTEGRATED DEFLECTING VOLTAGE OF 20 MV

• for the option: 42 cells and a total deflector length of
1.75 m;

• for the quasi ( ) option: 29 cells and a total de-
flector length of 1.369 m.

The simulated RF parameters determined for all three cases
are listed in Table II. We next compared the modes in terms of
efficiency. The mode efficiency is given by

(12)

where , , and . is represented in
Fig. 7. The slowest mode ( ) has the best efficiency, very
near to the maximum theoretical deflector efficiency achievable.
Mostly important is that all three modes satisfy the requirement
that the filling time is smaller than the available RF pulse length.
Next, we evaluated the sensitivities obtained analyzing the

basic cell for every option and we found that the external cell
radius and iris radius are by far the most sensitive parameters.
The frequency sensitivities are reported in Table III. Concerning
the frequency sensitivities relative to the external cell radius it is
possible to conclude that errors in the cell diameter machining
of the order of m give frequency errors of the order of

kHz. A cell with a relative frequency error gives
an additional phase advance shift for cell
and as a result, the wave phase velocity will differ from the beam
velocity. Under these assumptions, phase advance errors in the
single cell are , and for the , and

, respectively. Based on the mechanical tolerance, we
therefore chose to proceed with the option. We selected
an iris-loaded backward traveling structure with a uniform cell
geometry and identical parameters for each cell, namely, a con-
stant-impedance type, in consideration of its development pe-

Fig. 8. Sketch of the high-energy RF deflector.

TABLE III
RESULTS OF BASIC CELL SENSITIVITY STUDIES FOR THE STUDIED OPTIONS

riod and structure simplicity. In order to take into account effects
of the mechanical tolerance on the integrated deflecting voltage,
our mode backward traveling deflecting device in prac-
tice is composed of 72 basic cells and two additional couplers
at the structure’s input and output. The basic cells are mainly
magnetically coupled on axis and the input and output cavities
are specifically designed to match the structure to the RF source
and load. A schematic view of the overall deflector concept is
shown in Fig. 8. The brazing process and geometrical imperfec-
tions can however give variations of the structure’s dimension
and therefore frequency error in each cell. Frequency tuning is
obtained by introducing two deformations placed in each cell
in the diametrically opposite position relative to the axis of the
structure. Electromagnetic simulation of two spherical deforma-
tions with a diameter of 2 mm shows the frequency increasing
by 1.4 MHz, enough to compensate frequency errors due to lim-
ited precision in the cell production.

B. Mode-Separation
The dipole deflecting mode has two degenerating polariza-

tions, and in order to avoid the excitation of the mode with po-
larity rotated at 90 , two longitudinal rods of diameter mm
crossing the cells off-axis at 50 mm were inserted. Basically the
working frequency of the deflecting mode with polarity at 0 is
essentially unperturbed, while the frequency shift of the 90 po-
larization is about 120MHz. Fig. 9 shows the HFSS simulations
on the pass-bands of the horizontal and vertical polarizations,
where the vertical mode has still a wide pass-band of 423 MHz,
resulting in clear mode-separation, high group-velocity, and low
sensitivity to fabrication tolerances.

C. Input and Output Coupler
In the traveling wave structures, a proper coupler design is

required to correctly excite the periodic field inside the cavity,
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Fig. 9. Pass-band of the HEM11 polarizations before and after splitting with
the two longitudinal rods.

while minimizing the reflection coefficient. The phase advance
must be 120 degrees at the working frequency of 2998.01 MHz.
The coupler matching is achieved with a trial-and-error pro-
cedure, by varying the coupler radius , and the width of
the coupling window, both shown in Fig. 10, according to the
short-circuits method reported in the references [32]. It can be
shown that a necessary and sufficient condition to obtain critical
coupling (reflection coefficient ) and the correct phase ad-
vance between the cells is given by

(13)

where for denotes the phase of the reflection co-
efficients evaluated with the model shown in Fig. 11(a), (b),
and (c), respectively. Once the condition in (13) is met, where

in our case, the coupler satisfies the critical cou-
pling and excites the correct phase advance independently of
the number of cells in the periodic structure. We have obtained
the critical coupling, , with mm and

mm. It is worthwhile noting that a taper between
the WR284 standard waveguide and the coupler waveguide is
used in order to adapt the different waveguide dimensions.
In order to validate the performance of the couplers, we

simulated seven cells, including the two coupler cells, and
analyzed the electric field and magnetic field components as
shown in Fig. 12. The chosen geometry keeps the maximum
surface electric field at 20.5 MV/m and the maximum magnetic
field at 110 kA/m at the coupler window. These field values
are low enough to keep the temperature rise due to pulse
heating below 5 . Defining
and , the normalized com-
ponents to the Lorentz force with respect to the magnetic
component, we have evaluated , , and on
the z-axis in Fig. 13. The magnetic field gives the most relevant
contribution of the deflection. This is in agreement with the fact
that for an iris of mm, the group velocity is negative,
which means that the coupling between the deflector cells is
mostly magnetic. Fig. 13 also shows that the electric field has
a peak in the middle of the iris, while the magnetic field has
a peak in the middle of the cell. In Fig. 14, the phase of

Fig. 10. Detail of the coupler of the traveling wave deflector. Geometrical pa-
rameters are , , , window
thickness 2 mm, , and .

Fig. 11. Short-circuit model used to excite the mode in the traveling-
wave deflector.

Fig. 12. 2-D distribution of the complexmagnitude of the magnetic and electric
fields computed in the seven cell structure.

and along the seven-cell deflector are plotted. The phase
advance is periodic with deg and the phases of
and are flat in the middle of the iris and in the middle of
the cell, respectively.
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Fig. 13. Simulated , , and on the z axis as a function
of the longitudinal deflector coordinate; the red and the blue points on the z axis
represent the middle of the iris and the middle of the cells, respectively.

IV. ENGINEERING AND COLD RF MEASUREMENTS

After the RF design and the beam dynamics simulations con-
firmed the expected performance, we competitively tendered
and procured the fabrication of the two high-energy deflectors
with the firm PMB High Tech Devices in France, the successful
bidder according to the European Union regulations. The main
parameters for the specifications are summarized in Table IV,
based on a normalized projected emittance of m at 1.2 GeV.
The potential temporal resolution is less than 20 fs rms for both
deflectors. Fig. 15 shows the deflector, which is composed by
seventy-two cells plus two couplers, which vertically excite the
deflecting field. We performed the cold microwave measure-
ments in a clean room with a humidity of 50%, a tempera-
ture of 20.2 , and an atmospheric pressure of 760 Torr. After
tuning each cell in the traveling-wave mode and matching the
couplers to the whole structure, the mode working fre-
quency of the structures was estimated by phase measurements
along the cell’s axis, performed by using a rod acting as a short
circuit [33]. This movable metal rod allows, measure of the
phase advance by shorting each individual cell, step by step.
The frequency for which the phase dispersion was less than

over the full length of the structure was considered as
the working frequency. Results of the phase advance measure-
ments are shown in Figs. 16 and 17. The magnitude field mea-
surements are shown in Fig. 18. Table V lists the RF parameters
of the vertical and horizontal deflectors, respectively, measured
before and after brazing. Due to initial difficulties in the tuning
of the vertical deflector, there is a difference of kHz in the
operational frequencies between the two deflectors. The quality
factor increases after the brazing process, due to the soldering
material that improved the electric contact between the cells. It
is worthwhile to note that working temperatures for the vertical
and horizontal deflectors in the operation conditions are 40.5
and 31.2 , respectively. The RF measurements are in excel-
lent agreement with the design points as the specification for the
attenuation and filling time do not take into account the wave-
guide and the aperture of both couplers. After the RF cold test,

Fig. 14. Simulated phase advance and as a function of the longitu-
dinal deflector coordinate z; the red and the blue points represent the middle of
the iris and the middle of the cells, respectively.

Fig. 15. High-energy deflector composed of seventy-two cells plus two cou-
plers. Basic cell (left) and detail of the two longitudinal rods (right).

Fig. 16. Results of the phase advance measurements using a movable metallic
rod for the vertical (up) deflector, obtaining
and the integrated phase errors as a function of the cell number (bottom).

we performed the vacuum and water channel experiments/mea-
surements of the device.
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Fig. 17. Results of the phase advance measurements using a movable metallic
rod for the horizontal (up) deflector, obtaining
and the integrated phase errors as a function of the cell number (bottom).

Fig. 18. Results of the field amplitude measurements using a movable metallic
rod for the horizontal (up) and vertical (bottom) deflectors. The dashed black
lines are the results of the simulations.

TABLE IV
RF PARAMETERS FOR THE S-BAND VERTICAL AND HORIZONTAL DEFLECTORS.
RF STRUCTURE IS CONSTANT IMPEDANCE AND BACKWARD TRAVELING WAVE

A. Effect of the Tuning Errors

In order to estimate the effects of the RF tuning errors of the
deflector, cell-to-cell phase advance errors were used to estimate

electron beam trajectories in the deflector itself. The equation of
motion in the vertical plane for each th cell is

(14)

where is the RF phase corresponding to the zero-
crossing, is the length of the deflector, is the integrated de-
flecting voltage, is the longitudinal momentum of the beam,
and is the integrated phase error along the structure, as re-
ported in the lower plot of Fig. 16. Fig. 19 shows the effect of
the tuning errors on the transverse displacement of the centroid
(on the top) and on the angular divergence (at the bottom) as a
function of the longitudinal coordinate inside the deflector and
for different RF phases. The beam energy is 1.2 GeV and the in-
tegrated deflecting voltage is 20MV. Effects of the tuning errors
on the transverse displacement and angular divergence could be
quite large if a limit on the integrated phase error is not prop-
erly chosen. Residual effects of the tuning error on the phase
advance can still be compensated by globally adjusting the RF
phase of the deflector system. In this case, the residual kick can
be compensated with a RF phase of 1.3 deg and then only an
offset of 0.1 mm remains, which is not a severe problem for the
measurements.

V. RF POWER DISTRIBUTION AND CONDITIONING
The two deflectors were tested at full available RF power in

the FERMI linac using the RF distribution system shown in
Fig. 20. In order to use the same klystron for both deflectors,
an RF-switch is used to feed one deflector at full RF power at
a time. A second RF switch for each deflector is introduced in
order to completely attenuate the deflecting fields in the struc-
tures, when the second arm of the TH2132A 45 MW klystron is
used to feed another accelerating structure at the linac’s end. The
power test was performed during the FERMI commissioning
phase. For both deflectors, the RF conditioning process has been
performed with a pulse repetition rate of 10 Hz, by gradually
increasing the RF power and the pulse width. This operation
started with an RF power lower than 1MWandwith an RF pulse
width of 100 ns.When the power is increased for the first time in
the waveguides, switches, and deflectors, impurities are released
due to the RF heating, causing spikes in the vacuum levels.
However, the vacuum system was able to remove the impuri-
ties, so that the vacuum levels were always under mbar. It
is worthwhile to note that for the horizontal deflector we reached
the RF power of 12MWwith the RF pulse width of 700 ns in the
first eight hours of operation. Both deflectors were considered
as fully conditioned when it was possible to feed themwith a RF
power of 15 MW at 2500 ns and with the levels of the vacuum
pressure below the threshold of mbar. This result was
reached for both deflectors after approximately 24 hours of op-
eration. Looking at the reflected power from the deflector input,
it was possible to count the number of arcs produced by the ex-
traction of electrons from the metallic surface, and consequently
to estimate the breakdown rate (BDR). The BDR is the ratio be-
tween the number of breakdowns and the number of pulses per
RF period during which both the RF power and the width remain
constant at fixed values. After 40 hours of conditioning, we es-
timated the BDR as a function of the pulse width at 15 MW
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TABLE V
RF MEASUREMENTS FOR THE VERTICAL (V.) AND HORIZONTAL (H.) DEFLECTORS AT ROOM TEMPERATURE

Fig. 19. Effects of the phase advance errors on the transverse displacement of
the centroid (up) and on the transverse kick (bottom) as a function of the RF
phase.

Fig. 20. Waveguide switch system, used to choose the deflection plane.

for the horizontal deflector. Results are shown in Fig. 21. Since
the filling times of the both deflectors are approximately 500 ns,
then the RF pulse width was fixed at 900 ns. Such a value en-
sures a suitable filling of the structures and furthermore the BDR
is kept below . It is worthwhile to note that, due to lim-
ited RF power and, consequently, low BDR, it was not possible
to get the dependence of the BDR on the RF power. The depen-
dence of the BRD on the RF pulse length is clear for high values
of RF width, while at low RF widths the structure has very few
discharges.

VI. ELECTRON BEAM MEASUREMENTS AND RESULTS
The deflectors have been extensively used to characterize and

optimize the electron bunch before entering in the undulator

Fig. 21. Breakdown rate of the horizontal deflector as a function of the RF
pulse width at fixed RF power of 15 MW.

Fig. 22. Electron bunch temporal structure in different machine configurations
obtained by activating the vertical deflector and sending the stretched beam to
the downstream screen. The head of the bunch is on the left.

chains both during the commissioning of FERMI FEL-1 and
FEL-2 lines either in the routine machine tuning for user’s ded-
icated beam time. Fig. 22 shows the electron current profile and
the corresponding bunch length measured with the deflector and
imaged on a downstream screen in different machine configu-
rations. When, for instance, the X-band cavity settings are not
fully optimized to linearize the compression process, the tem-
poral bunch profile has current spikes in the head (see “green”
profile) or in the tail (see “red” profile). As mentioned above,
another important beam property that can be diagnosed by the
deflectors is the time-sliced emittance. A quadrupole-scan exe-
cuted after activating the vertical (or alternatively, horizontal)
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Fig. 23. On the left: vertical deflected beam imaged on the downstream screen;
on the right: horizontal (blue line) and vertical (red line) time-sliced emittance
measured by using the HERFDy and HERFDx alternatively.

Fig. 24. Calibration factor S (up) and time resolution (bottom) as a
function of the integrated deflecting voltage for the vertical deflector.

GeV, , .

deflector provides a measurement of the horizontal (or alter-
natively, vertical) slice emittance and Courant-Snyder parame-
ters along the longitudinal bunch coordinate. A typical measure-
ment of time-sliced emittance is reported in Fig. 23. In order to
verify RF parameters for the vertical deflector, the time resolu-
tion and the calibration factor have been measured as a function
of the integrated deflecting voltage, and the results are reported
in Fig. 24. There is good agreement between the model and ex-
perimental data and the rms time resolution is approximately
30 fs at 21 MV. It is worthwhile noting that in the experiment
the angular-to-spatial element was just 5.3 m. Using values
of the beam optics for the nominal lattice reported in Table I,
then the will be approximately 10 m providing, through
a different setting of the optics, a factor of two better reso-
lution. Finally, combining the vertical deflector with the hori-
zontal bending energy spectrometer provides a measurement of
the beam’s longitudinal phase space and an example is reported
in Fig. 25. This possibility has constituted a valuable advan-
tage in the electron beam optimization. In fact, in an FEL oper-
ating in a seeded HGHG mode, the interplay between the elec-
tron longitudinal phase space and the seed laser time-frequency
dependence plays a crucial role [34], [35] and can strongly in-
fluence the final FEL output performance in terms of spectral

Fig. 25. Longitudinal phase space as measured in the diagnostic beam dump.

purity and intensity. As recently demonstrated [36], [37], con-
trolling and manipulating the longitudinal phase space of the
electron bunch can improve the final FEL performance, so it is
very important to measure it before sending the bunch through
the undulator beam-line. Moreover, micro-bunching instabili-
ties driven by space charge forces and coherent synchrotron ra-
diation occurring during the bunch compressor process and in
the linac transport, increase the bunch slice energy spread, thus
deteriorating the FEL performance. As is known, a laser heater
system can efficiently suppress the micro-bunching instabilities
[38]. Measuring the slice energy spread at the end of the linac
with this diagnostic equipment has allowed us to efficiently tune
the laser heater parameters and minimize the final slice energy
spread. Moreover it allowed us to study the impact of the laser
heater induced energy spread on the FEL process in the high
power regime, thus paving the road of novel FEL concepts [39].

VII. CONCLUSION

Two high-resolution transverse deflector devices were de-
signed, fabricated, and tested along with their periphery systems
and are now in operation for routinely diagnosing the high-en-
ergy and high-brightness electron beam for the FERMI. The fab-
ricated 2.5-m long deflectors respectively generate a vertical and
horizontal integrated deflecting voltage of 23 MV, and the tem-
poral structure of a compressed beam to hundreds femtoseconds
was successful projected on a screen with a calibration factor up
to 2 mm/ps. The longitudinal phase-space and slice emittance of
the bunch were also successfully measured and analyzed. Fur-
thermore, the knowledge of the slice energy spread at the end of
the linac measured with this diagnostic equipment has allowed
us to efficiently tune the laser heater parameters in order to sup-
press micro-bunching instability.
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