326 research outputs found

    Algorithms and Bounds for Very Strong Rainbow Coloring

    Full text link
    A well-studied coloring problem is to assign colors to the edges of a graph GG so that, for every pair of vertices, all edges of at least one shortest path between them receive different colors. The minimum number of colors necessary in such a coloring is the strong rainbow connection number (\src(G)) of the graph. When proving upper bounds on \src(G), it is natural to prove that a coloring exists where, for \emph{every} shortest path between every pair of vertices in the graph, all edges of the path receive different colors. Therefore, we introduce and formally define this more restricted edge coloring number, which we call \emph{very strong rainbow connection number} (\vsrc(G)). In this paper, we give upper bounds on \vsrc(G) for several graph classes, some of which are tight. These immediately imply new upper bounds on \src(G) for these classes, showing that the study of \vsrc(G) enables meaningful progress on bounding \src(G). Then we study the complexity of the problem to compute \vsrc(G), particularly for graphs of bounded treewidth, and show this is an interesting problem in its own right. We prove that \vsrc(G) can be computed in polynomial time on cactus graphs; in contrast, this question is still open for \src(G). We also observe that deciding whether \vsrc(G) = k is fixed-parameter tractable in kk and the treewidth of GG. Finally, on general graphs, we prove that there is no polynomial-time algorithm to decide whether \vsrc(G) \leq 3 nor to approximate \vsrc(G) within a factor n1εn^{1-\varepsilon}, unless P==NP

    Applicability of the Theory of Planned Behavior for Predicting Alcohol Use in Spanish Early Adolescents

    Get PDF
    According to the theory of planned behavior (TPB), intentions to perform a specific behavior are the result of attitudes, norms, and perceived control, and in turn, intentions and perceived control are the main predictors of the behavior. This study aimed to test the applicability of TPB in predicting alcohol use in normative pre-adolescents. The sample was composed of 755 Spanish adolescents aged 11 to 15 (M = 12.24; SD = 0.56), 47.1% females, from 12 state secondary schools in Spain. The results of path analysis indicate that positive attitudes towards alcohol, favorable norms towards alcohol, and offer vulnerability (perceived control) are significantly positively related to intentions to use alcohol as well as negatively related to actual behavioral control (i.e., actual strategies to avoid alcohol use). In turn, intentions to use and actual control predict higher alcohol frequency and heavy drinking. Significant indirect effects of these antecedents were found on alcohol outcomes through the mediation of intentions and actual control. The findings suggest that the validity and applicability of the TPB in normative pre-adolescents depend on the severity of alcohol use and point to a need to consider negative social influence in decision making processes in early adolescenceThis research was funded by the Global Center for Applied Health Research (GCAHR; Arizona State University) and supported by the Programa de Axudas á etapa posdoutoral da Xunta de Galicia (Consellería de Cultura, Educación e Ordenación Universitaria) and by FEDER/Ministerio de Ciencia, Innovación y Universidades—Agencia Estatal de Investigación (Grant PSI2015-65766-R)—under the Axuda para a consolidación e estruturación de unidades de investigación competitivas e outras accións de fomento nas universidades do SUG (GRC, 2018)S

    Cancer diagnosis in Catalonia (Spain) after two years of COVID-19 pandemic: an incomplete recovery

    Full text link
    Background: This study aimed to estimate potential undetected cancers over the first 2 years of the COVID-19 pandemic in Catalonia. Methods: Cancer incidence was compared between pre-pandemic (2019) and pandemic (March 2020-January 2022) periods in the Catalan Pathology Registry (CPR) according to sex, age, and tumor site. The correlation between cancer diagnosis and COVID-19 health care workload was also evaluated by means of the Pearson's correlation coefficient (R). The expected incident cancers (E) during the pandemic were estimated by applying 2019 CPR cancer incidence specific rates by sex and 5-year age groups to the 2020 and 2021 Catalan population pyramids. CPR incident cancers were considered observed (O). Standardized incidence ratios (SIR) and 95% confidence intervals (as) were calculated using the 0/E ratio. Results: After two pandemic years, cancer diagnosis decreased by 12% (SIR 0.88, 95% a 0.87-0.89), or similar to 7700 undetected cancers (13 000 with nonmelanoma skin cancer). Without nonmelanoma skin cancer, 72% of the cancer underdiagnosis was generated in 2020. Diagnoses decreased more in men (whole pandemic -14%; 2020 -21%; 2021 8%) than in women (---9%, 19%, 3%, respectively), dropping significantly overall in all pandemic waves but the fifth (first -37%, second -16%, third -8%, fourth -6%, fifth -2%, sixth -6%), and across all adult age groups. In the first wave, CPR cancer diagnosis was inversely correlated with COVID-19 caseload in primary care (R -0.91, 95% CI -0.97 to -0.75) and occupancy in conventional hospital wards (R -0.91, 95% a -0.99 to -0.48) and intensive care (R 0.91, 95% a 95% 0.98 to 0.70). Conclusions: Our study evaluated the overall pandemic impact on cancer diagnosis on a large scale and with minimal selection bias, showing that as of February 2022, cancer detection in Catalonia had not yet recovered to pre-pandemic levels. Pending cancer incidence data from population-based cancer registries, early CPR data could inform the development of Spanish cancer control plans

    The action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling

    Get PDF
    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of VEGF/VEGFR2 and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Taken together, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration

    Observation of the Dependence of Scintillation from Nuclear Recoils in Liquid Argon on Drift Field

    Full text link
    We have exposed a dual-phase Liquid Argon Time Projection Chamber (LAr-TPC) to a low energy pulsed narrowband neutron beam, produced at the Notre Dame Institute for Structure and Nuclear Astrophysics to study the scintillation light yield of recoiling nuclei in a LAr-TPC. A liquid scintillation counter was arranged to detect and identify neutrons scattered in the LAr-TPC target and to select the energy of the recoiling nuclei. We report the observation of a significant dependence on drift field of liquid argon scintillation from nuclear recoils of 11 keV. This observation is important because, to date, estimates of the sensitivity of noble liquid TPC dark matter searches are based on the assumption that electric field has only a small effect on the light yield from nuclear recoils.Comment: v3 updated to reflect published version, including a set of plots for 49.9 keV dat

    Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    Full text link
    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83m^{83m}Kr internal conversion electrons is comparable to that from 207^{207}Bi conversion electrons, we obtained the numbers of excitons (NexN_{ex}) and ion pairs (NiN_i) and their ratio (Nex/NiN_{ex}/N_i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.Comment: v2 to reflect published versio

    Quantum physics meets biology

    Full text link
    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the last decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world view of quantum coherences, entanglement and other non-classical effects, has been heading towards systems of increasing complexity. The present perspective article shall serve as a pedestrian guide to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future quantum biology, its current status, recent experimental progress and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.Comment: 26 pages, 4 figures, Perspective article for the HFSP Journa

    Recent Borexino results and prospects for the near future

    Full text link
    The Borexino experiment, located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010) has allowed the first independent measurements of 7Be, 8B and pep fluxes as well as the first measurement of anti-neutrinos from the earth. After a purification of the scintillator, Borexino is now in phase II since 2011. We review here the recent results achieved during 2013, concerning the seasonal modulation in the 7Be signal, the study of cosmogenic backgrounds and the updated measurement of geo-neutrinos. We also review the upcoming measurements from phase II data (pp, pep, CNO) and the project SOX devoted to the study of sterile neutrinos via the use of a 51Cr neutrino source and a 144Ce-144Pr antineutrino source placed in close proximity of the active material.Comment: 8 pages, 11 figures. To be published as proceedings of Rencontres de Moriond EW 201

    Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun

    Full text link
    The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as well as further validation of the LMA-MSW model of neutrino oscillations.Comment: Proceedings from NOW (Neutrino Oscillation Workshop) 201
    corecore