89 research outputs found

    Effect of radar rainfall time resolution on the predictive capability of a distributed hydrologic model

    Full text link
    The performance of a hydrologic model depends on the rainfall input data, both spatially and temporally. As the spatial distribution of rainfall exerts a great influence on both runoff volumes and peak flows, the use of a distributed hydrologic model can improve the results in the case of convective rainfall in a basin where the storm area is smaller than the basin area. The aim of this study was to perform a sensitivity analysis of the rainfall time resolution on the results of a distributed hydrologic model in a flash-flood prone basin. Within such a catchment, floods are produced by heavy rainfall events with a large convective component. A second objective of the current paper is the proposal of a methodology that improves the radar rainfall estimation at a higher spatial and temporal resolution. Composite radar data from a network of three C-band radars with 6-min temporal and 2 × 2 km2 spatial resolution were used to feed the RIBS distributed hydrological model. A modification of the Window Probability Matching Method (gauge-adjustment method) was applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation by computing new Z/R relationships for both convective and stratiform reflectivities. An advection correction technique based on the cross-correlation between two consecutive images was introduced to obtain several time resolutions from 1 min to 30 min. The RIBS hydrologic model was calibrated using a probabilistic approach based on a multiobjective methodology for each time resolution. A sensitivity analysis of rainfall time resolution was conducted to find the resolution that best represents the hydrological basin behaviour

    The hydrometeorological forecasting in the framework of the european project FLASH

    Get PDF
    The principal objective of the European Project FLASH (Observations, Analysis and Modeling of Lightning Activity in Thunderstorms, for use in Short Term Forecasting of Flash Floods) is the improvement of flash flood forecasting. With this aim, the Spanish contribution is centred in the integration of radar and raingauge data, lightning data and MM5 outputs into the hydrological model RIBS (Real-time Interactive Basin Simulator). Eleven case studies which affected the coastal region of Catalonia, between 2000 and 2006, have been selected. This region is characterized by great vulnerability due to concentration of the major part of the population, tourism and agricultural activities. This contribution shows the data and methodology as well as some preliminary results obtained within the project

    Usefulness of AEMET generated climate projections for climate change impact studies on floods at national-scale (Spain)

    Full text link
    [EN] The preliminary assessment of flood risk should take into account the effect of climate change on flood hazards, according to the EU Floods Directive. Some climatic variables supplied by a set of global climate models have been regionalized by the Spanish Meteorological Agency (Agencia Estatal de Meteorología, AEMET) in Spain, by using two statistical downscaling methods. The usefulness of this regionalization can be assessed by their fitting to the observed data in the control period (1961-2000). A comparison based on a set of statistics has been conducted. Results show that although the fit is good for annual mean values, annual maximum values for both regionalization are not adequately simulated by AEMET models, since they provide lower extremes with a smaller variability. In addition, a great uncertainty in the characterization of these extremes values, in comparison with the observations, is observed.[ES] La evaluación preliminar del riesgo de inundación deberá tener en cuenta el efecto del cambio climático en la incidencia de inundaciones, según la Directiva de Inundaciones. La Agencia Estatal de Meteorología (AEMET) española ha regionalizado algunas variables suministradas por varios modelos climáticos globales en España, mediante dos métodos de regionalización estadística. La utilidad de esta regionalización, en cuanto a las precipitaciones, reside en el ajuste que tengan a los datos observados en el periodo de control (1961-2000). Para ello, se ha realizado una comparación en base a una serie de estadísticos. Los resultados muestran que, aunque el ajuste es bueno para valores medios anuales, los valores máximos anuales de precipitación para ambas regionalizaciones no son adecuados, ya que los modelos simulan un clima con precipitaciones máximas anuales inferiores, menor variabilidad de los extremos y una gran incertidumbre en la caracterización de los valores más extremos.Los autores agradecen la financiación del proyecto CGL2014-52570-R ‘Impacto del cambio climático en la ley de frecuencia bivariada de avenidas’ del Ministerio de Economía, Industria y Competitividad de España. Los autores también agradecen al Centro de Estudios Hidrográficos del CEDEX y a la Agencia Estatal de Meteorología (AEMET) por suministrar los datos de caudal y de las variables climáticas, respectivamente, usadas en este estudio.Garijo, C.; Mediero, L.; Garrote, L. (2018). Utilidad de las proyecciones climáticas generadas por AEMET para estudios de impacto del cambio climático sobre avenidas a escala nacional. Ingeniería del Agua. 22(3):153-166. https://doi.org/10.4995/ia.2018.9312SWORD153166223Álvarez, A.J., Mediero, L., García, C. 2014. Análisis y selección de modelos estadísticos para el ajuste de la ley de frecuencia de caudales máximos anuales en España. Ingeniería Civil, 174, 5-31.European Union. 2007. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. Official Journal of the European Union, L 288, 27-34.Garijo, C., Mediero, L. 2018. Influence of climate change on flood magnitude and seasonality in the Arga River catchment in Spain. Acta Geophysica, https://doi.org/10.1007/s11600-018-0143-0IPCC. 2014. Cambio climático 2014: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. Ginebra, Suiza. ISBN: 978-92-9169-343-6Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., Yiou, P. 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, 14, 563-578, https://doi.org/10.1007/s10113-013-0499-2Kundzewicz, Z.W., Krysanova, V., Dankers, R., Hirabayashi,Y., Kanae,S., Hattermann, F. F., Huang, S., Milly, P. C. D., Stoffel, M., Driessen, P. P. J., Matczak, P., Quevauviller, P., Schellnhuber, H.-J2017. Differences in flood hazard projections in Europe - their causes and consequences for decision making, Hydrological Sciences Journal 62, 1-14, https://doi.org/10.1080/02626667.2016.1241398Morata-Gasca, A. 2014. Guía de escenarios regionalizados de cambio climático sobre España a partir de los resultados del IPCCAR4. Agencia Estatal de Meteorología, Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, España.Quintana Segui, P., Ribes, A., Martín, E., Habets, F., Boé, J. 2010.Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins. Journal of Hydrology, 383, 111-124, https://doi.org/10.1016/j.jhydrol.2009.09.050Teutschbein, C., Seibert, J. 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, 16, 12-29, https://doi.org/10.1016/j.jhydrol.2012.05.052Teutschbein, C., Seibert, J. 2013. Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions?. Hydrology and Earth System Sciences 17, 5061-5077, https://doi.org/10.5194/hess-17-5061-2013.Themeßl, M.J., Gobiet, A., Leuprecht, A. 2011. Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. International Journal of Climatology, 31, 1530-1544. https://doi.org/10.1002/joc.216

    Structural changes in FeOx/γ-Al2O3 catalysts during ethylbenzene dehydrogenation

    Get PDF
    The structural changes that occur in a FeOx/γ-Al2O3 catalyst during the dehydrogenation of ethylbenzene in a fluidized CREC Riser Simulator have been investigated. Chemical and morphological changes are observed to take place as a result of reaction. Electron microscopy reveals the formation of needle-like alumina structures apparently enclosing iron oxide particles. The formation of such structures at relatively low temperatures is unexpected and has not previously been reported. Additionally, X-ray diffraction and Mössbauer spectroscopy confirmed the reduction of the oxidation state of iron, from Fe2O3 (haematite) to Fe3O4 (magnetite). Iron carbides, Fe3C and ɛ-Fe2C, were detected by electron microscopy through electron diffraction and lattice fringes analysis. Carbon deposition (coking) on the catalyst surface also occurs. The observed structural changes are likely to be closely correlated with the catalytic properties of the materials, in particular with catalyst deactivation, and thereby provide important avenues for future study of this industrially important reaction. Fe2O3/Al2O3 catalyst undergoes chemical and morphological changes during ethylbenzene dehydrogenation forming Al2O3 needles which appear to contain reduced Fe3O4 particles. Fe3C also forms during reaction

    Diagnosing Causes of Water Scarcity in Complex Water Resources Systems and Identifying Risk Management Actions

    Get PDF
    From the water management perspective, water scarcity is an unacceptable risk of facing water shortages to serve water demands in the near future. Water scarcity may be temporary and related to drought conditions or other accidental situation, or may be permanent and due to deeper causes such as excessive demand growth, lack of infrastructure for water storage or transport, or constraints in water management. Diagnosing the causes of water scarcity in complex water resources systems is a precondition to adopt effective drought risk management actions. In this paper we present four indices which have been developed to evaluate water scarcity. We propose a methodology for interpretation of index values that can lead to conclusions about the reliability and vulnerability of systems to water scarcity, as well as to diagnose their possible causes and to propose solutions. The described methodology was applied to the Ebro river basin, identifying existing and expected problems and possible solutions. System diagnostics, based exclusively on the analysis of index values, were compared with the known reality as perceived by system managers, validating the conclusions in all case

    Influence of the aqueous matrix on the degradation of cyanotoxins by CWPO: a study on the Iberian Peninsula freshwaters

    Full text link
    The increasing occurrence of toxic cyanobacterial blooms worldwide represents a critical health and environmental risk. Catalytic wet peroxide oxidation (CWPO) has emerged as an efficient and environmentally friendly technology for the removal of cyanotoxins in water. Nevertheless, its effectiveness has just been demonstrated in deionized water or simple synthetic aqueous matrices. In this work, the effect of the different components of the aqueous matrix on the CWPO of cyanotoxins was deeply evaluated considering the widespread properties of the Iberian Peninsula freshwaters. The presence of Cl-, HCO3- and SO42- ions reduced the oxidation rate of cylindrospermopsin (CYN) up to 70–80% at the highest concentrations tested (2000, 250 and 500 mg L−1 for Cl-, HCO3- and SO42-, respectively) due to their hydroxyl radical scavenging capacity. The presence of natural organic matter (NOM) resulted in a similar outcome (oxidation rate reduction up to 90% at the highest concentration tested, 20 mg L−1), but in this case due to the consumption of hydroxyl radicals in competition with CYN oxidation. The presence of NO3- and H2PO4- did not show any significant effect on CYN oxidation. Similarly, the presence of cyanobacteria (Chrysosporum ovalisporum, 50 µg chlorophyll-a L−1) did not appreciably affect the CYN oxidation rate. These results were consistent with those obtained by evaluating the impact of real aqueous matrices from drinking water treatment plants (DWTPs) located in Castilla y León and Extremadura regions (Spain) on CWPO performance. This knowledge is key to the implementation of the technology for the treatment of surface waters affected by toxic cyanobacterial bloomsThis research has been supported by the CYTED Ibero-American Science and Technology Program for Development (CYTED-2019) through the project TALGENTOX (PCI2020–112013) and by Spanish Ministry for Science and Innovation (MICINN) through the project PID2019–105079RB-I00. D. Ortiz thanks the Spanish Ministry of Universities (MIU) for the FPU predoctoral grant (FPU19/04816). M. Munoz thanks the Spanish MINECO for the Ramon ´ y Cajal postdoctoral contract (RYC-2016–20648). We especially thank Aqualia for providing the water samples from DWTPs employed in this study, which was performed in the framework of Rewaise project (http://rewaise.eu

    The FLASH project: using lightning data to better understand and predict flash floods

    Get PDF
    The FLASH project was implemented from 2006 to 2010 underthe EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in orderto understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intenseconvection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educationaloutreach through our website http://flashproject.orgsupplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be preventedas the climate changes, long-range regional lightning networks can supply valuable data, in realtime, for warningend-users and stakeholders of imminent intense rainfall and possible flash floods

    Identification of coherent flood regions across Europe by using the longest streamflow records

    Get PDF
    This study compiles a new dataset, consisting of the longest available flow series from across Europe, and uses it to study the spatial and temporal clustering of flood events across the continent. Hydrological series at 102 gauging stations were collected from 25 European countries. Five geographically distinct large-scale homogeneous regions are identified: (i) an Atlantic region, (ii) a Continental region, (iii) a Scandinavian region, (iv) an Alpine region, and (v) a Mediterranean region. The months with a higher likelihood of flooding were identified in each region. The analysis of the clustering of annual counts of floods revealed an over-dispersion in the Atlantic and Continental regions, forming flood-rich and flood-poor periods, as well as an under-dispersion in the Scandinavian region that points to a regular pattern of flood occurrences at the inter-annual scale. The detection of trends in flood series is attempted by basing it on the identified regions, interpreting the results at a regional scale and for various time periods: 1900-1999; 1920-1999; 1939-1998 and 1956-1995. The results indicate that a decreasing trend in the magnitude of floods was observed mainly in the Continental region in the period 1920-1999 with 22% of the catchments revealing such a trend, as well as a decreasing trend in the timing of floods in the Alpine region in the period 1900-1999 with 75% of the catchments revealing this trend. A mixed pattern of changes in the frequency of floods over a threshold and few significant changes in the timing of floods were detected

    The European 2015 drought from a hydrological perspective

    Get PDF
    In 2015 large parts of Europe were affected by drought. In this paper, we analyze the hydrological footprint (dynamic development over space and time) of the drought of 2015 in terms of both severity (magnitude) and spatial extent and compare it to the extreme drought of 2003. Analyses are based on a range of low flow and hydrological drought indices derived for about 800 streamflow records across Europe, collected in a community effort based on a common protocol. We compare the hydrological footprints of both events with the meteorological footprints, in order to learn from similarities and differences of both perspectives and to draw conclusions for drought management. The region affected by hydrological drought in 2015 differed somewhat from the drought of 2003, with its center located more towards eastern Europe. In terms of low flow magnitude, a region surrounding the Czech Republic was the most affected, with summer low flows that exhibited return intervals of 100 years and more. In terms of deficit volumes, the geographical center of the event was in southern Germany, where the drought lasted a particularly long time. A detailed spatial and temporal assessment of the 2015 event showed that the particular behavior in these regions was partly a result of diverging wetness preconditions in the studied catchments. Extreme droughts emerged where preconditions were particularly dry. In regions with wet preconditions, low flow events developed later and tended to be less severe. For both the 2003 and 2015 events, the onset of the hydrological drought was well correlated with the lowest flow recorded during the event (low flow magnitude), pointing towards a potential for early warning of the severity of streamflow drought. Time series of monthly drought indices (both streamflow- and climate-based indices) showed that meteorological and hydrological events developed differently in space and time, both in terms of extent and severity (magnitude). These results emphasize that drought is a hazard which leaves different footprints on the various components of the water cycle at different spatial and temporal scales. The difference in the dynamic development of meteorological and hydrological drought also implies that impacts on various water-use sectors and river ecology cannot be informed by climate indices alone. Thus, an assessment of drought impacts on water resources requires hydrological data in addition to drought indices based solely on climate data. The transboundary scale of the event also suggests that additional efforts need to be undertaken to make timely pan-European hydrological assessments more operational in the future

    Understanding Flood Regime Changes in Europe: a state-of-the-art assessment

    Get PDF
    There is growing concern that flooding is becoming more frequent and severe in Europe. A better understanding of flood regime changes and their drivers is therefore needed. The paper reviews the current knowledge on flood regime changes in European rivers that has traditionally been obtained through two alternative research approaches. The first approach is the data-based detection of changes in observed flood events. Current methods are reviewed together with their challenges and opportunities. For example, observation biases, the merging of different data sources and accounting for nonlinear drivers and responses. The second approach consists of modelled scenarios of future floods. Challenges and opportunities associated with flood change scenarios are discussed such as fully accounting for uncertainties in the modelling cascade and feedbacks. To make progress in flood change research, we suggest that a synthesis of these two approaches is needed. This can be achieved by focusing on long duration records and flood-rich and flood-poor periods rather than on short duration flood trends only, by formally attributing causes of observed flood changes, by validating scenarios against observed flood regime dynamics, and by developing low-dimensional models of flood changes and feedbacks. The paper finishes with a call for a joint European flood change research network
    corecore