210 research outputs found
Evidence for elevated emissions from high-latitude wetlands contributing to high atmospheric CH4 concentration in the early Holocene
The major increase in atmospheric methane (CH4) concentration during the last glacial-interglacial transition provides a useful example for understanding the interactions and feedbacks among Earth\u27s climate, biosphere carbon cycling, and atmospheric chemistry. However, the causes of CH4 doubling during the last deglaciation are still uncertain and debated. Although the ice-core data consistently suggest a dominant contribution from northern high-latitude wetlands in the early Holocene, identifying the actual sources from the ground-based data has been elusive. Here we present data syntheses and a case study from Alaska to demonstrate the importance of northern wetlands in contributing to high atmospheric CH4concentration in the early Holocene. Our data indicate that new peatland formation as well as peat accumulation in northern high-latitude regions increased more than threefold in the early Holocene in response to climate warming and the availability of new habitat as a result of deglaciation. Furthermore, we show that marshes and wet fens that represent early stages of wetland succession were likely more widespread in the early Holocene. These wetlands are associated with high CH4 emissions due to high primary productivity and the presence of emergent plant species that facilitate CH4 transport to the atmosphere. We argue that early wetland succession and rapid peat accumulation and expansion (not simply initiation) contributed to high CH4 emissions from northern regions, potentially contributing to the sharp rise in atmospheric CH4 at the onset of the Holocene
Clinical evidence for overcoming capecitabine resistance in a woman with breast cancer terminating in radiologically occult micronodular pseudo-cirrhosis with portal hypertension: a case report
<p>Abstract</p> <p>Introduction</p> <p>We report a case of stage IV breast cancer terminating in an unusual picture of radiologically occult micronodular pseudo-cirrhosis. Contrast-enhanced computed tomography showed no evidence of metastatic breast cancer within the liver. Unlike the few previously reported cases of intrasinusoidal spread of breast cancer, our patient was palliated with a transjugular intrahepatic portosystemic shunt along with salvage chemohormonal therapy. In addition, our patient demonstrated proof of the principle of the dependence of capecitabine (Xeloda) efficacy on dose scheduling as predicted by laboratory studies based on Gompertzian tumor growth and the Norton-Simon hypothesis.</p> <p>Case presentation</p> <p>We report the case of a 52-year-old Caucasian woman who developed radiological signs of portal hypertension without radiological evidence of hepatic metastasis five years after being diagnosed with metastatic breast cancer. She was receiving chemotherapy for stage IV breast cancer initially thought to be metastatic only to the bones. During salvage therapy with high-dose estradiol (Estradiol valerate), vinorelbine (Navelbine) and bevacizumab (Avastin), she suddenly developed signs of portal hypertension confirmed on computed tomography and by portal and systemic venous pressure measurements. Drug toxicity due to bevacizumab (Avastin) was initially and incorrectly entertained as a cause. The patient underwent palliative transjugular intrahepatic portosystemic shunt and transhepatic venous liver biopsy, which revealed the presence of rapidly progressive and uncontrolled metastatic breast cancer. The new discovery of radiologically occult intrasinusodal hepatic metastases with secondary micronodular cirrhosis was found to be the cause of her sudden onset portal hypertension. The patient's resistance to capecitabine (Xeloda) was reversed by changing the schedule of medication to biweekly 7/7 (7 days ingesting drug alternating with 7 days off drug) from the 14/7 (14 days ingesting drug alternating with a 7 day rest period) day schedule approved by the US Food and Drug Administration.</p> <p>Conclusion</p> <p>This case report demonstrates an unusual presentation of radiographically occult hepatic metastasis from breast cancer palliated with transjugular intrahepatic portosystemic shunt. All patients with advanced breast cancer developing unexpected portal hypertension should be considered candidates for liver biopsy despite normal computed tomography of the liver imaging results. This is the first report of a reversal of clinical resistance to capecitabine (Xeloda) by changing from the schedule of 14/7 day to a biweekly 7/7 day schedule. This suggests that a biweekly schedule may be best for some patients.</p
Multicolour correlative imaging using phosphor probes
Correlative light and electron microscopy exploits the advantages of optical methods, such as multicolour probes and their use in hydrated live biological samples, to locate functional units, which are then correlated with structural details that can be revealed by the superior resolution of electron microscopes. One difficulty is locating the area imaged by the electron beam in the much larger optical field of view. Multifunctional probes that can be imaged in both modalities and thus register the two images are required. Phosphor materials give cathodoluminescence (CL) optical emissions under electron excitation. Lanthanum phosphate containing thulium or terbium or europium emits narrow bands in the blue, green and red regions of the CL spectrum; they may be synthesised with very uniform-sized crystals in the 10- to 50-nm range. Such crystals can be imaged by CL in the electron microscope, at resolutions limited by the particle size, and with colour discrimination to identify different probes. These materials also give emissions in the optical microscope, by
multiphoton excitation. They have been deposited on the surface of glioblastoma cells and imaged by CL. Gadolinium oxysulphide doped with terbium emits green photons by either ultraviolet or electron excitation. Sixty-nanometre crystals of this phosphor have been imaged in the atmospheric scanning electron microscope (JEOL ClairScope). This probe and microscope combination allow correlative imaging in hydrated samples. Phosphor probes should prove to be very useful in correlative light and electron microscopy, as fiducial
markers to assist in image registration, and in high/super resolution imaging studies
Do new Ethical Issues Arise at Each Stage of Nanotechnological Development?
The literature concerning ethical issues associated with nanotechnologies has become prolific. However, it has been claimed that ethical problems are only at stake with rather sophisticated nanotechnologies such as active nanostructures, integrated nanosystems and heterogeneous molecular nanosystems, whereas more basic nanotechnologies such as passive nanostructures mainly pose technical difficulties. In this paper I argue that fundamental ethical issues are already at stake with this more basic kind of nanotechnologies and that ethics impacts every kind of nanotechnologies, already from the simplest kind of engineered nanoproducts. These ethical issues are mainly associated with the social desirability of nanotechnologies, with the difficulties to define nanotechnologies properly, with the important uncertainties surrounding nanotechnologies, with the threat of ‘nano-divide’, and with nanotechnology as ‘dual-use technology’
A randomized controlled phase III study of VB-111 combined with bevacizumab vs bevacizumab monotherapy in patients with recurrent glioblastoma (GLOBE).
BackgroundOfranergene obadenovec (VB-111) is an anticancer viral therapy that demonstrated in a phase II study a survival benefit for patients with recurrent glioblastoma (rGBM) who were primed with VB-111 monotherapy that was continued after progression with concomitant bevacizumab.MethodsThis pivotal phase III randomized, controlled trial compared the efficacy and safety of upfront combination of VB-111 and bevacizumab versus bevacizumab monotherapy. Patients were randomized 1:1 to receive VB-111 1013 viral particles every 8 weeks in combination with bevacizumab 10 mg/kg every 2 weeks (combination arm) or bevacizumab monotherapy (control arm). The primary endpoint was overall survival (OS), and secondary endpoints were objective response rate (ORR) by Response Assessment in Neuro-Oncology (RANO) criteria and progression-free survival (PFS).ResultsEnrolled were 256 patients at 57 sites. Median exposure to VB-111 was 4 months. The study did not meet its primary or secondary goals. Median OS was 6.8 versus 7.9 months in the combination versus control arm (hazard ratio, 1.20; 95% CI: 0.91-1.59; P = 0.19) and ORR was 27.3% versus 21.9% (P = 0.26). A higher rate of grades 3-5 adverse events was reported in the combination arm (67% vs 40%), mainly attributed to a higher rate of CNS and flu-like/fever events. Trends for improved survival with combination treatment were seen in the subgroup of patients with smaller tumors and in patients who had a posttreatment febrile reaction.ConclusionsIn this study, upfront concomitant administration of VB-111 and bevacizumab failed to improve outcomes in rGBM. Change of treatment regimen, with the lack of VB-111 monotherapy priming, may explain the differences from the favorable phase II results.Clinical trials registrationNCT02511405
Corrigendum to "Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools" published in Atmos. Chem. Phys., 10, 169–199, 2010
Author(s): Hewitt, CN; Lee, JD; MacKenzie, AR; Barkley, MP; Carslaw, N; Carver, GD; Chappell, NA; Coe, H; Collier, C; Commane, R; Davies, F; Davison, B; DiCarlo, P; Di Marco, CF; Dorsey, JR; Edwards, PM; Evans, MJ; Fowler, D; Furneaux, KL; Gallagher, M; Guenther, A; Heard, DE; Helfter, C; Hopkins, J; Ingham, T; Irwin, M; Jones, C; Karunaharan, A; Langford, B; Lewis, AC; Lim, SF; MacDonald, SM; Mahajan, AS; Malpass, S; McFiggans, G; Mills, G; Misztal, P; Moller, S; Monks, PS; Nemitz, E; Nicolas-Perea, V; Oetjen, H; Oram, DE; Palmer, PI; Phillips, GJ; Pike, R; Plane, JMC; Pugh, T; Pyle, JA; Reeves, CE; Robinson, NH; Stewart, D; Stone, D; Whalley, LK; Yang,
A role for domain I of the hepatitis C virus NS5A protein in virus assembly
The NS5A protein of hepatitis C virus (HCV) plays roles in both virus genome replication and assembly. NS5A comprises three domains, of these domain I is believed to be involved exclusively in genome replication. In contrast, domains II and III are required for the production of infectious virus particles and are largely dispensable for genome replication. Domain I is highly conserved between HCV and related hepaciviruses, and is highly structured, exhibiting different dimeric conformations. To investigate the functions of domain I in more detail, we conducted a mutagenic study of 12 absolutely conserved and surface-exposed residues within the context of a JFH-1-derived sub-genomic replicon and infectious virus. Whilst most of these abrogated genome replication, three mutants (P35A, V67A and P145A) retained the ability to replicate but showed defects in virus assembly. P35A exhibited a modest reduction in infectivity, however V67A and P145A produced no infectious virus. Using a combination of density gradient fractionation, biochemical analysis and high resolution confocal microscopy we demonstrate that V67A and P145A disrupted the localisation of NS5A to lipid droplets. In addition, the localisation and size of lipid droplets in cells infected with these two mutants were perturbed compared to wildtype HCV. Biophysical analysis revealed that V67A and P145A abrogated the ability of purified domain I to dimerize and resulted in an increased affinity of binding to HCV 3’UTR RNA. Taken together, we propose that domain I of NS5A plays multiple roles in assembly, binding nascent genomic RNA and transporting it to lipid droplets where it is transferred to Core. Domain I also contributes to a change in lipid droplet morphology, increasing their size. This study reveals novel functions of NS5A domain I in assembly of infectious HCV and provides new perspectives on the virus lifecycle
Physiological Correlates of Volunteering
We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation
Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society
Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies
The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes
- …