39 research outputs found

    How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group?

    Get PDF
    This work was financially support by a Marie Curie Initial Training Network grant, “Understanding the evolutionary origin of biological diversity” (ITN-2008–213780 SPECIATION), grants from the Academy of Finland to A.H. (project 132619) and M.K. (projects 268214 and 272927), a grant from NERC, UK to M.G.R. (grant NE/J020818/1), and NERC, UK PhD studentship to D.J.P. (NE/I528634/1).For many organisms the ability to cold acclimate with the onset of seasonal cold has major implications for their fitness. In insects, where this ability is widespread, the physiological changes associated with increased cold tolerance have been well studied. Despite this, little work has been done to trace changes in gene expression during cold acclimation that lead to an increase in cold tolerance. We used an RNA-Seq approach to investigate this in two species of the Drosophila virilis group. We found that the majority of genes that are differentially expressed during cold acclimation differ between the two species. Despite this, the biological processes associated with the differentially expressed genes were broadly similar in the two species. These included: metabolism, cell membrane composition, and circadian rhythms, which are largely consistent with previous work on cold acclimation/cold tolerance. In addition, we also found evidence of the involvement of the rhodopsin pathway in cold acclimation, a pathway that has been recently linked to thermotaxis. Interestingly, we found no evidence of differential expression of stress genes implying that long-term cold acclimation and short-term stress response may have a different physiological basis.PostprintPeer reviewe

    Development of the SIOPE DIPG network, registry and imaging repository : a collaborative effort to optimize research into a rare and lethal disease

    Get PDF
    Diffuse intrinsic pontine glioma (DIPG) is a rare and deadly childhood malignancy. After 40 years of mostly single-center, often non-randomized trials with variable patient inclusions, there has been no improvement in survival. It is therefore time for international collaboration in DIPG research, to provide new hope for children, parents and medical professionals fighting DIPG. In a first step towards collaboration, in 2011, a network of biologists and clinicians working in the field of DIPG was established within the European Society for Paediatric Oncology (SIOPE) Brain Tumour Group: the SIOPE DIPG Network. By bringing together biomedical professionals and parents as patient representatives, several collaborative DIPG-related projects have been realized. With help from experts in the fields of information technology, and legal advisors, an international, web-based comprehensive database was developed, The SIOPE DIPG Registry and Imaging Repository, to centrally collect data of DIPG patients. As for April 2016, clinical data as well as MR-scans of 694 patients have been entered into the SIOPE DIPG Registry/Imaging Repository. The median progression free survival is 6.0 months (95% Confidence Interval (CI) 5.6-6.4 months) and the median overall survival is 11.0 months (95% CI 10.5-11.5 months). At two and five years post-diagnosis, 10 and 2% of patients are alive, respectively. The establishment of the SIOPE DIPG Network and SIOPE DIPG Registry means a paradigm shift towards collaborative research into DIPG. This is seen as an essential first step towards understanding the disease, improving care and (ultimately) cure for children with DIPG.Peer reviewe

    Incremental forming of colour-coated sheets

    No full text

    Effects of temperature on heat-shock responses and survival of two species of marine invertebrates from sub-Antarctic Marion Island

    Get PDF
    This study examined high temperature survival and heat shock protein 70 (Hsp70) responses to temperature variation for two marine invertebrate species on sub-Antarctic Marion Island. The isopod Exosphaeroma gigas Leach and the amphipod Hyale hirtipalma Dana had the same tolerance to high temperature. The mean upper temperature which was lethal for 50% of the population (upper lethal temperature, ULT50) was 26.4°C for both species. However, the isopod E. gigas showed significant plasticity of ULT50, with a positive response to acclimation. In addition, the isopod had a heat shock response of Hsp70 at all acclimations, and the amount of Hsp70 protein increased significantly from basal levels upon an acute warm exposure after a cold acclimation. By contrast, the amphipod H. hirtipalma showed limited plasticity of ULT50 and no evidence for a heat shock response (failure of three different Hsp70 antibodies to bind to the extracted 70kDa proteins). Overall, these results reflect different flexibility of thermal tolerance of intertidal invertebrate species on Marion Island, with possible variation in the underlying cellular mechanisms, suggesting that warming associated with climate change may result in changes in species assemblage structure in sub-polar environments
    corecore