7,620 research outputs found

    CP violation with a dynamical Higgs

    Get PDF
    We determine the complete set of independent gauge and gauge-Higgs CP-odd effective operators for the generic case of a dynamical Higgs, up to four derivatives in the chiral expansion. The relation with the linear basis of dimension six CP-odd operators is clarified. Phenomenological applications include bounds inferred from electric dipole moment limits, and from present and future collider data on triple gauge coupling measurements and Higgs signals.Comment: 41 pages, 3 figures; V2: citations added, typos corrected, version published on JHE

    Spatial clustering of mental disorders and associated characteristics of the neighbourhood context in Malmö, Sweden, in 2001

    Get PDF
    Study objective: Previous research provides preliminary evidence of spatial variations of mental disorders and associations between neighbourhood social context and mental health. This study expands past literature by (1) using spatial techniques, rather than multilevel models, to compare the spatial distributions of two groups of mental disorders (that is, disorders due to psychoactive substance use, and neurotic, stress related, and somatoform disorders); and (2) investigating the independent impact of contextual deprivation and neighbourhood social disorganisation on mental health, while assessing both the magnitude and the spatial scale of these effects. Design: Using different spatial techniques, the study investigated mental disorders due to psychoactive substance use, and neurotic disorders. Participants: All 89 285 persons aged 40–69 years residing in Malmö, Sweden, in 2001, geolocated to their place of residence. Main results: The spatial scan statistic identified a large cluster of increased prevalence in a similar location for the two mental disorders in the northern part of Malmö. However, hierarchical geostatistical models showed that the two groups of disorders exhibited a different spatial distribution, in terms of both magnitude and spatial scale. Mental disorders due to substance consumption showed larger neighbourhood variations, and varied in space on a larger scale, than neurotic disorders. After adjustment for individual factors, the risk of substance related disorders increased with neighbourhood deprivation and neighbourhood social disorganisation. The risk of neurotic disorders only increased with contextual deprivation. Measuring contextual factors across continuous space, it was found that these associations operated on a local scale. Conclusions: Taking space into account in the analyses permitted deeper insight into the contextual determinants of mental disorders

    A New bound on CP Violation in the τ\tau Lepton Yukawa Coupling and electroweak baryogenesis

    Full text link
    The origin of the matter-antimatter asymmetry in the Universe is a fundamental question of physics. Electroweak baryogenesis is a compelling scenario for explaining it but it requires beyond the Standard Model sources of the CP symmetry violation. The simplest possibility is CP violation in the third generation fermion Higgs couplings, widely investigated theoretically and searched for experimentally. It has been found that the experimental bounds on the CP violation in the quark Yukawa couplings exclude their significant role in the electroweak baryogenesis, but it can be still played by the τ\tau lepton Yukawa coupling. It is shown in this paper that, within the context of the Standard Model Effective Field Theory and assuming an underlying flavour symmetry of the Wilson coefficients, the electron dipole moment bound on the τ\tau lepton Yukawa coupling is two orders of magnitude stronger than previously reported. This sheds strong doubts on its role in the electroweak baryogenesis, further stimulates the interest in its experimental verification and makes electroweak baryogenesis even more difficult to explain.Comment: V2: references added; minor changes on the text; results unchanged; version accepted for publication on JHE

    Higgs ultraviolet softening

    Get PDF
    We analyze the leading effective operators which induce a quartic momentum dependence in the Higgs propagator, for a linear and for a non-linear realization of electroweak symmetry breaking. Their specific study is relevant for the understanding of the ultraviolet sensitivity to new physics. Two methods of analysis are applied, trading the Lagrangian coupling by: i) a "ghost" scalar, after the Lee-Wick procedure; ii) other effective operators via the equations of motion. The two paths are shown to lead to the same effective Lagrangian at first order in the operator coefficients. It follows a modification of the Higgs potential and of the fermionic couplings in the linear realization, while in the non-linear one anomalous quartic gauge couplings, Higgs-gauge couplings and gauge-fermion interactions are induced in addition. Finally, all LHC Higgs and other data presently available are used to constrain the operator coefficients; the future impact of pp4 leptonspp\to\text{4 leptons} data via off-shell Higgs exchange and of vector boson fusion data is considered as well. For completeness, a summary of pure-gauge and gauge-Higgs signals exclusive to non-linear dynamics at leading-order is included.Comment: 31 pages, 3 figures, 7 table

    A Novel Retrieval-Dependent Memory Process Revealed by the Arrest of ERK1/2 Activation in the Basolateral Amygdala.

    Get PDF
    Fully consolidated fear memories can be maintained or inhibited by retrieval-dependent mechanisms depending on the degree of re-exposure to fear cues. Short exposures promote memory maintenance through reconsolidation, and long exposures promote inhibition through extinction. Little is known about the neural mechanisms by which increasing cue exposure overrides reconsolidation and instead triggers extinction. Using auditory fear conditioning in male rats, we analyzed the role of a molecular mechanism common to reconsolidation and extinction of fear, ERK1/2 activation within the basolateral amygdala (BLA), after intermediate conditioned stimulus (CS) exposure events. We show that an intermediate re-exposure (four CS presentations) failed to activate ERK1/2 in the BLA, suggesting the absence of reconsolidation or extinction mechanisms. Supporting this hypothesis, pharmacologically inhibiting the BLA ERK1/2-dependent signaling pathway in conjunction with four CS presentations had no effect on fear expression, and the NMDA receptor partial agonist d-cycloserine, which enhanced extinction and ERK1/2 activation in partial extinction protocols (seven CSs), had no behavioral or molecular effect when given in association with four CS presentations. These molecular and behavioral data reveal a novel retrieval-dependent memory phase occurring along the transition between conditioned fear maintenance and inhibition. CS-dependent molecular events in the BLA may arrest reconsolidation intracellular signaling mechanism in an extinction-independent manner. These findings are critical for understanding the molecular underpinnings of fear memory persistence after retrieval both in health and disease.SIGNIFICANCE STATEMENT Consolidated fear memories can be altered by retrieval-dependent mechanisms. Whereas a brief conditioned stimulus (CS) exposure promotes fear memory maintenance through reconsolidation, a prolonged exposure engages extinction and fear inhibition. The nature of this transition and whether an intermediate degree of CS exposure engages reconsolidation or extinction is unknown. We show that an intermediate cue exposure session (four CSs) produces the arrest of ERK1/2 activation in the basolateral amygdala, a common mechanism for reconsolidation and extinction. Amnestic or hypermnestic treatments given in association with four CSs had no behavioral or molecular effects, respectively. This evidence reveals a novel retrieval-dependent memory phase. Intermediate degrees of CS exposure fail to trigger reconsolidation or extinction, leaving the original memory in an insensitive state

    Disentangling a dynamical Higgs

    Get PDF
    The pattern of deviations from Standard Model predictions and couplings is different for theories of new physics based on a non-linear realization of the SU(2)L×U(1)YSU(2)_L\times U(1)_Y gauge symmetry breaking and those assuming a linear realization. We clarify this issue in a model-independent way via its effective Lagrangian formulation in the presence of a light Higgs particle, up to first order in the expansions: dimension-six operators for the linear expansion and four derivatives for the non-linear one. Complete sets of pure gauge and gauge-Higgs operators are considered, implementing the renormalization procedure and deriving the Feynman rules for the non-linear expansion. We establish the theoretical relation and the differences in physics impact between the two expansions. Promising discriminating signals include the decorrelation in the non-linear case of signals correlated in the linear one: some pure gauge versus gauge-Higgs couplings and also between couplings with the same number of Higgs legs. Furthermore, anomalous signals expected at first order in the non-linear realization may appear only at higher orders of the linear one, and vice versa. We analyze in detail the impact of both type of discriminating signals on LHC physics.Comment: Version published in JHE

    The complete HEFT Lagrangian after the LHC Run I

    Get PDF
    The complete effective chiral Lagrangian for a dynamical Higgs is presented and constrained by means of a global analysis including electroweak precision data together with Higgs and triple gauge-boson coupling data from the LHC Run I. The operators’ basis up to next-to-leading order in the expansion consists of 148 (188 considering righthanded neutrinos) flavour universal terms and it is presented here making explicit the custodial nature of the operators. This effective Lagrangian provides the most general description of the physical Higgs couplings once the electroweak symmetry is assumed, and it allows for deviations from the SU (2)L doublet nature of the Standard Model Higgs. The comparison with the effective linear Lagrangian constructed with an exact SU (2)L doublet Higgs and considering operators with at most canonical dimension six is presented. A promising strategy to disentangle the two descriptions consists in analysing (i) anomalous signals present only in the chiral Lagrangian and not expected in the linear one, that are potentially relevant for LHC searches, and (ii) decorrelation effects between observables that are predicted to be correlated in the linear case and not in the chiral one. The global analysis presented here, which includes several kinematic distributions, is crucial for reducing the allowed parameter space and for controlling the correlations between parameters. This improves previous studies aimed at investigating the Higgs Nature and the origin of the electroweak symmetry breakingI.B. research was supported by an ESR contract of the EU network FP7 ITN INVISIBLES (Marie Curie Actions, PITN-GA-2011-289442).M.C.GG is supported by USA-NSF grant PHY-13-16617, by grants 2014- SGR-104 and by FPA2013-46570 and consolider-ingenio 2010 program CSD-2008-0037. L.M. acknowledge partial support of CiCYT through the project FPA2012-31880 and of the Spanish MINECO’s “Centro de Excelencia Severo Ochoa” Programme under grant SEV- 2012-0249. M.C.G-G and L.M. acknowledge partial support by FP7 ITN INVISIBLES (PITN-GA-2011-289442), FP10 ITN ELUSIVES (H2020-MSCA-ITN-2015-674896) and INVISIBLES-PLUS (H2020- MSCA-RISE-2015-690575

    Exotic vertolike quark phenomenology in the minimal linear σ model

    Full text link
    Extensions of the Standard Model that include vectorlike quarks commonly also include additional particles that may mediate new production or decay modes. Using the minimal linear σ model as an example, which reduces to the minimal SO (5)/SO (4) composite Higgs model in a specific limit, we consider the phenomenology of vectorlike quarks when a scalar singlet σ is present. This new particle may be produced in the decays T → tσ, B → bσ, where T and B are vectorlike quarks of charges 2/3 and −1/3, respectively, with the subsequent decay σ → W+W−, ZZ, hh. By scanning over the allowed parameter space we find that these decays may be dominant. In addition, we find that the presence of several new particles allows for single T production cross sections larger than those expected in minimal models. We discuss the observability of these new signatures in existing searchesThe authors acknowledge partial financial support by the Spanish MINECO through the Centro de excelencia Severo Ochoa Program under Grant No. SEV2016-0597. J. A. G., L. M. and J. A. A. S. acknowledge partial financial support by the Spanish “Agencia Estatal de Investigación” (AEI) and the EU “Fondo Europeo de Desarrollo Regional” (FEDER) through the Projects No. FPA2016-78645-P and No. FPA2016-78220-C3-1-P. L. M. acknowledges partial financial support by the Spanish MINECO through the “Ramón y Cajal” programme (RYC-2015-17173). J. M. N. acknowledges support from the Ramón y Cajal Fellowship Contract No. RYC-2017-22986 and from the Spanish Proyectos de I + D de Generación de Conocimiento via Grant No. PGC2018-096646-A-I00. L. M. and J. M. N. also acknowledge support from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant agreements No. 690575 (RISE InvisiblesPlus) and No. 674896 (ITN ELUSIVES

    Testable axion-like particles in the minimal linear σ model

    Full text link
    Axion and axion-like particle models are typically affected by a strong fine-tuning problem in conceiving the electroweak and the Peccei-Quinn breaking scales. Within the context of the Minimal Linear σ Model, axion-like particle constructions are identified where this hierarchy problem is solved, accounting for a TeV Peccei-Quinn breaking scale and a pseudoscalar particle with a mass larger than 10 MeV. Potential signatures at colliders and B-factories are discussedThe authors acknowledge partial financial support by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreements No.690575 and No. 674896. J.A.G and L.M. acknowledge partial financial support by the Spanish Agencia Estatal de Investigación (AEI) and the EU Fondo Europeo de Desarrollo Regional(FEDER) through the project FPA2016-78645-P, and through the Centro de excelencia Severo Ochoa Program under grant SEV-2016-0597. L. M. acknowledges partial financial support by the Spanish MINECO through the “Ramón y Cajal” programme (RYC-2015-17173).J.A.G. and L.M. thank the Physics and Astronomy department “Galileo Galilei” of the Padua University for hospitality during the development of this project. Furthermore, L.M. thanks the Kavli Institute for the Physics and Mathematics of the Universe for hospitality during the development of this projec
    corecore