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troweak symmetry breaking. Their specific study is relevant for the understanding of the

ultraviolet sensitivity to new physics. Two methods of analysis are applied, trading the

Lagrangian coupling by: i) a “ghost” scalar, after the Lee-Wick procedure; ii) other effec-

tive operators via the equations of motion. The two paths are shown to lead to the same

effective Lagrangian at first order in the operator coefficients. It follows a modification of

the Higgs potential and of the fermionic couplings in the linear realization, while in the non-

linear one anomalous quartic gauge couplings, Higgs-gauge couplings and gauge-fermion

interactions are induced in addition. Finally, all LHC Higgs and other data presently avail-

able are used to constrain the operator coefficients; the future impact of pp → 4 leptons

data via off-shell Higgs exchange and of vector boson fusion data is considered as well. For

completeness, a summary of pure-gauge and gauge-Higgs signals exclusive to non-linear

dynamics at leading-order is included.
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1 Introduction

A revival of interest in theories with higher derivative kinetic terms [1, 2] is taking place, as

the increased momentum dependence of propagators softens the sensitivity to ultraviolet

scales. Quadratic divergences are absent due to the faster fall-off of the momentum depen-

dence of the propagators. For instance this avenue has been recently explored in view of

an alternative solution to the electroweak hierarchy problem [3, 4].

Originally proposed by Lee and Wick [1, 2], a large literature followed to ascertain

the field theoretical consistency of this type of theories, in particular from the point of

view of unitarity and causality. The issue is delicate as a second pole appears in the field

propagators, and this pole has a wrong-sign residue. Naively such theories are unstable

and not unitary. The present understanding is that the S matrix for asymptotically free
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states may remain unitary, though, and acausality only occurs at the microscopic level

while macroscopically and/or in any measurable quantity causality holds as it should.

For the computation of physical amplitudes, a modification of the usual rules to com-

pute perturbative amplitudes was proposed [5–8] respecting the aforementioned desired

properties. A more user-friendly field-theory tool [3] to approach these theories consists in

trading the higher derivative kinetic term by the presence of a new state with the same

quantum numbers of the standard field and quadratic kinetic energy, albeit with a “wrong”

sign for both quadratic terms (kinetic energy and mass), i.e. a state of negative norm: a

Lee-Wick (LW) partner or “ghost”. It corresponds to the second pole in the propagator,

describing an unstable state that would thus not threaten the unitarity of the S matrix,

as only the asymptotically free states participating in a scattering process are relevant for

the latter.

In this paper, we focus on the study of a higher derivative kinetic term for the Higgs

particle, in a model independent way. Although present Higgs data are fully consistent

with the Higgs particle being part of a gauge SU(2) scalar doublet, the issue is widely open

and all efforts should be done to settle it. Two main classes of effective Lagrangians are

pertinent, depending on how the Standard Model (SM) electroweak symmetry breaking

(EWSB) is assumed to be realized in the presence of a light Higgs particle: linearly for

an elementary Higgs particle [9–11] or non-linearly for a “dynamical” -composite- light

one [12–19]. The relevant couplings to be added to the SM Lagrangian will be denoted by

O�Φ = (DµD
µΦ)† (DνD

νΦ) (1.1)

for linearly realized electroweak symmetry breaking (EWSB) scenarios, and

P�h =
1

2
�h�h =

1

2
(∂µ∂

µh) (∂ν∂
νh) (1.2)

if the light Higgs stems from non-linearly realized EWSB. In eq. (1.1) Φ denotes the gauge

SU(2) scalar doublet, which in the unitary gauge reads Φ =
(
0, (v + h)/

√
2
)

with v/
√

2

being the Φ vacuum expectation value (vev) and h the Higgs excitation. Dµ stands for the

covariant derivative

DµΦ ≡
(
∂µ + igWµ +

i g′

2
Bµ

)
Φ (1.3)

with Wµ ≡W a
µ (x)σa/2 and Bµ denoting the SU(2)L and U(1)Y gauge bosons, respectively.

In equation (1.2), h denotes instead a generic scalar singlet, whose couplings are de-

scribed by a non-linear Lagrangian (often dubbed chiral Lagrangian) and do not need to

match those of a SU(2) doublet component.

Note that the operators O�Φ and P�Φ are but rarely [10] considered by practitioners

of effective Lagrangian analyses, and almost never selected as one of the elements of the

operator bases. They tend to be substituted instead by (a combination of) other operators

–which include fermionic ones– because the bounds on exotic fermionic couplings are often

more stringent in constraining BSM theories than those from bosonic interactions. Never-

theless, the new data and the special and profound theoretical impact of higher derivative

kinetic terms deserve focalised studies, to which this paper intends to contribute.
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In this context it is important to notice that, in order to have any impact on the

hierarchy problem, the validity of the operators under study should be extrapolated into

the regime E � Λ, which is beyond the usual regime where EFT description is valid. In

this sense, the SM Lagrangian with the addition of these operators can be treated as the

complete Lagrangian in the ultraviolet.

Either in the linear or the non-linear realizations, the contribution to the Lagrangian

of the effective operators in eqs. (1.1) and (1.2) can be parametrised as

δL = ciOi , (1.4)

with Oi ≡ {O�Φ,P�h} respectively, with the parameters ci having mass dimension −2.1

The impact of O�Φ and P�h appears as a correction in the propagator of the h scalar which

is quartic in four-momentum:
i

p2 −m2
h + ci p4

. (1.5)

This propagator has now two poles and describes thus two degrees of freedom. For instance

for 1/ci � m2
h they are approximately located at [3]

p2 = m2
h and p2 = −1/ci , (1.6)

which implies that the sign of the operator coefficient needs to obey ci < 0 in order to

avoid tachyonic instabilities.

It is important to find signals which discriminate among those two categories –linear

versus non-linear EWSB– and this will be one of the main focuses of this paper for the higher

derivative scalar kinetic terms considered. It will be shown that the effects of the couplings

in eqs. (1.1) and (1.2) differ on their implications for the gauge and gauge-Higgs sectors.

The phenomenological analysis will be restricted to tree-level effects and consistently to

first order in ci, and we will use two independent and alternative techniques, showing that

they lead to the same results:

• To trade the higher-derivative coupling by a LW “ghost” heavy particle, which is

subsequently integrated out.

• To apply first the Lagrangian equations of motion (EOM) to the operator, trading the

coupling by other standard higher-dimension effective operators, which only require

traditional fields and field-theory methods.

Together with exploring the different physical effects expected from the Higgs linear higher-

derivative term O�Φ and the non-linear one P�h, we will clarify their exact theoretical

relation, determining which specific combination of non-linear operators would result in

the same physics impact than the linear operator O�Φ.

1From the point of view of the chiral expansion, P�Φ is a four-derivative coupling, and a slightly different

normalization (by a v2 factor) was adopted in ref. [20], using a dimensionless coefficient; the choice here

allows to use the same notation for both expansions.
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The phenomenological analysis below includes as well a study of the impact of both

operators in present and future LHC data. In the case of the LW version of the SM, it

has been shown [21] that the measurements of the S and T parameters set very strong

constraints on the gauge and fermionic LW partner masses, which need to exceed several

TeV; this implies a sizeable tension with the issue of the electroweak hierarchy problem, as

the LW partners induce a finite shift in the Higgs mass proportional to their own masses.

On the contrary, the EW constraints are mild for the Higgs doublet LW partners, whose

impact may be within LHC reach [22]. We explore the experimental prospects for O�Φ and

P�h at first order in the effective operator coefficients, focusing only on the quark sector

for simplicity as the extension to the lepton sector is straightforward.

The structure of the manuscript can be easily inferred from the table of Contents.

2 Elementary Higgs: O�Φ

The quark-Higgs sector of the SM Lagrangian supplemented by O�Φ will be considered in

this section:

L = (DµΦ)†DµΦ−
(
q̄LΦ̃YUuR + q̄LΦYDdR + h.c.

)
+ c�ΦO�Φ − V (Φ†Φ) , (2.1)

where Φ̃ ≡ iσ2Φ, and the Standard Model potential,

V (Φ†Φ) = λ

[
Φ†Φ − v2

2

]2

, (2.2)

can be rewritten for future convenience in the unitary gauge in terms of the Higgs particle

mass, m2
h = 2λv2 and the Higgs doublet vev 〈Φ〉 = v/

√
2 as

V (h) =
m2
h

2
h2 +

m2
h

2v
h3 +

m2
h

8v2
h4 . (2.3)

2.1 Analysis in terms of the LW ghost

The Lee-Wick method for the case of a complex scalar doublet is applied next to the

analysis of the operator O�Φ in eqs. (1.1) and (1.4), following ref. [3]. Defining an auxiliary

complex SU(2) doublet ϕ, eq. (2.1) can be rewritten as a two-scalar-field Lagrangian:

L = (DµΦ)†DµΦ + (Dµϕ)†DµΦ + (DµΦ)†Dµϕ

−
(
q̄LΦ̃YUuR + q̄LΦYDdR + h.c.

)
− 1

c�Φ
ϕ†ϕ− V (Φ†Φ) .

(2.4)

The mass squared term for the auxiliary field is given by −1/c�Φ, which requires c�Φ < 0

to avoid a tachyonic resonance. The kinetic energy terms can now be diagonalised via the

simple field redefinitions Φ→ Φ′ −ϕ′, ϕ→ ϕ′, and the mass terms can be diagonalised by

a subsequent symplectic rotation given by:(
Φ′

ϕ′

)
=

(
coshα sinhα

sinhα coshα

)(
Φ′′

ϕ′′

)
, (2.5)
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where

tanh 2α =
2x

1 + 2x
, with x ≡ −c�Φm

2
h/2 . (2.6)

Finally, dropping the primes on the field notation, the scalar Lagrangian in eq. (2.4) can

be rewritten as

Lϕ,Φ =(DµΦ)†DµΦ− (Dµϕ)†Dµϕ+ LϕY − V (Φ, ϕ) (2.7)

with

LϕY = − (1 + x)
(
q̄L(Φ̃− ϕ̃)YUuR + q̄L(Φ− ϕ)YDdR + h.c.

)
, (2.8)

V (Φ, ϕ) = −
m2
h

2

(
1− x+

1

x

)
ϕ†ϕ−

m2
h

2
(1− x) Φ†Φ

+
m2
h

2v2
(1− 4x)

(
(Φ− ϕ)†(Φ− ϕ)

)2
, (2.9)

expanded at order x, assuming small x values. The location of the minimum of the Higgs

potential gets c�Φ corrections. For instance, for a BSM scale large compared with the

Higgs mass (i.e. x→ 0), the approximate location of the vacuum corresponds to:

Φ→ 〈Φ〉+
h√
2
, 〈Φ〉 =

v√
2

(
1 +

15

2
x2

)
+O(x3) , (2.10)

ϕ→ 〈ϕ〉+
χ√
2
, 〈ϕ〉 = −x v√

2
(1− 2x) +O(x3) , (2.11)

where h and χ are the field excitation over the potential minima, and the exact potential

has been retaken and terms up to x2 considered. In consequence, at leading order in c�Φ

the minimum of the Higgs potential remains unchanged. For the sake of comparison with

the non-linear case in the next section, it is useful to write explicitly the potential restricted

to the h and χ fields. After a further necessary diagonalization of the h and χ dependence,

their scalar potential reads at first order in x:

V (h, χ) =
m2
h

2
(1 + 2x)h2 +

m2
h

2

(
1 + 2x− 1

2x

)
χ2 +

m2
h

2v
(1 + 6x)(h− χ)3

+
m2
h

8v2
(1 + 8x)(h− χ)4 .

(2.12)

Eqs. (2.7) and (2.12) illustrate that for small x the χ state exhibits a “wrong” sign in both

the kinetic energy and the mass terms.

Integrating out the heavy scalar. At first order in the operator coefficient c�Φ, the

mixing in eq. (2.6) may be approximated by tanhα ∼ 2x = −c�Φm
2
h, and the effect of the

negative-norm heavy field described by ϕ with absolute mass ∼ |c−1
�Φ| can be integrated

out via its EOM:

ϕ̄i = c�Φ

(
d̄RY

†
DqL,i + q̄L,jεjiYUuR +

m2
h

v2
(Φ†Φ)Φi

)
+O

(
c2
�Φ

)
, (2.13)
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Throughout the paper we will work on the so-called Z-scheme of renormalization, in which

the five relevant electroweak parameters of the SM Lagrangian (neglecting fermion masses),

gs, g, g′, v and the h self-coupling, are fixed from the following five observables: the world

average value of αs [23], the Fermi constant GF as extracted from muon decay [23], αem

extracted from Thomson scattering [23], mZ as determined from the Z lineshape at LEP

I [23], and mh from the present LHC measurement [24, 25]. Eq. (2.13) above indicates

that O�Φ will impact the renormalised fermion masses and the Higgs sector parameters.

Specifically for the latter, while the electroweak vev v ≡ (
√

2GF )−1/2 is not corrected, the

Higgs mass renormalization must absorb a correction

δm2
h

m2
h

= 2x . (2.14)

The resulting renormalized effective Lagrangian reads (omitting again fermionic and gauge

kinetic terms):

L�Φ = (DµΦ)†DµΦ + LY�Φ + L4F
�Φ − V�Φ , (2.15)

where

LY�Φ =−
[
q̄LΦ̃YUuR + q̄LΦYDdR + h.c.

](
1− x

(
1− 2

Φ†Φ

v2

))
unitary gauge−−−−−−−→

− v + h√
2

[
ūLYUuR + d̄LYDdR + h.c.

](
1 +

x

v2
(h2 + 2hv)

)
, (2.16)

L4F
�Φ =− x 2

m2
h

[
+ (ūRY

†
UdL)(d̄LYUuR) + (ūRY

†
UuL)(ūLYUuR)

+ (ūLYDdR)(d̄RY
†
DuL) + (d̄LYDdR)(d̄RY

†
DdL)

+
{

(ūLYUuR)(d̄LYDdR)− (d̄LYUuR)(ūLYDdR) + h.c.
}]

, (2.17)

V�Φ =−
m2
h

2
(1− 3x) Φ†Φ +

m2
h

2v2
(1− 6x)

(
Φ†Φ

)2
+ 2x

m2
h

v4

(
Φ†Φ

)3
unitary gauge−−−−−−−→

m2
h

2
h2 +

m2
h

2v
(1 + 4x)h3 +

m2
h

8v2
(1 + 24x)h4 + x

m2
h

2v3

(
3h5 +

1

2v
h6

)
. (2.18)

It follow deviations from SM expectations in fermion-Higgs couplings, four-fermion inter-

actions and scalar properties; in particular, the relation between the Higgs self-couplings

and its mass is different from the SM one; this fact can be directly probed at the LHC

and ILC [26]. Moreover, the Higgs potential exhibits now h5 and h6 terms not present in

the SM, which require c�Φ < 0 for stability, consistently with the arguments given in the

Introduction. Note as well that, for the linear realization of EWSB under discussion, the

couplings involving gauge particles are not modified with respect to their SM values.

2.2 Analysis via EOM

An avenue alternative to the LW method when working at first order in the operator

coefficient, and one which involves only standard fields and standard field theory rules, is

– 6 –
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v 2c� F=-10-3
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Figure 1. The scalar potential in the linear Lagrangian for different values of the coefficient c�Φv
2.

The solid red line denotes the SM and the interline spacing is ∆(v2c�Φ) = 7.5 · 10−5.

to apply directly the EOM for the Φ field to the operator O�Φ in eq. (2.1):

�Φi = − δV

δ(Φ†Φ)
Φi −

(
d̄RY

†
DqL,i + q̄L,jεjiYUuR

)
, (2.19)

�Φ†i = −Φ†i
δV

δ(Φ†Φ)
−
(
−ūRY †UεijqL,j + q̄L,iYDdR

)
. (2.20)

We have checked that this method leads to the same low-energy renormalized effective

Lagrangian than that in eqs. (2.15)–(2.18), obtained via the Lee-Wick procedure involving

a “ghost” field.

Higgs potential. Figure 1 shows the dependence of the scalar potential on c�Φ: the

points |Φ| = ±v/
√

2, corresponding to the SM vacuum, switch from stable minima to

maxima as c�Φ runs from negative to positive values. The location of Higgs vev for negative

c�Φ is not modified at this order, see eq. (2.10).

3 Light dynamical Higgs: P�h

This section deals with the alternative scenario of a light dynamical Higgs, whose CP-even

bosonic effective Lagrangian has been discussed in refs. [17, 20]. For simplicity and focus,

the leading-order Lagrangian will be taken to be that of the SM modified only by the

action of the operator P�h in eq. (1.2). The scalar potential will thus be assumed as well

to take the SM form for h, to facilitate comparison with the linear case; nevertheless, in

appendix A we discuss the extension to the case of a completely general potential for a

singlet scalar field h, showing that the conclusions obtained below are maintained.

– 7 –
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The quark-Higgs sector of the Lagrangian reads then

L =
1

2
∂µh∂

µh− (v + h)2

4
Tr[VµV

µ]− v + h√
2

(Q̄LUYQR + h.c.) + c�hP�h − V (h) , (3.1)

where V (h) takes the functional form in eq. (2.3). Vµ ≡ (DµU) U†, where U(x) is a

dimensionless unitary matrix describing the longitudinal degrees of freedom of the EW

gauge bosons:

U(x) = eiσaπ
a(x)/v , U(x)→ LU(x)R† , (3.2)

where L, R denotes SU(2)L,R global transformations, respectively. Vµ is thus a vector

chiral field belonging to the adjoint of the global SU(2)L symmetry, and the covariant

derivative reads

DµU(x) ≡ ∂µU(x) + igWµ(x)U(x)− ig′

2
Bµ(x)U(x)σ3 . (3.3)

Note that eq. (3.1) is simply the SM Lagrangian written in chiral notation, but for the

additional presence of the P�h coupling.

3.1 Analysis in terms of the LW ghost

In parallel to the analysis in section (2.1), for c�h < 0 the action of the operator P�h in

the Lagrangian eq. (3.1) can be traded for that of an auxiliary SM singlet scalar field χ,

and the Lagrangian in eq. (3.1) reads then

L =
1

2
∂µh∂

µh+ ∂µh∂
µχ− (v + h)2

4
Tr[VµV

µ]− v + h√
2

(Q̄LUYQR + h.c.)−V (h, χ) , (3.4)

where the non-scalar kinetic terms were omitted and (see appendix A)

V (h, χ) =
m2
h

2
h2 +

m2
h

2v
h3 +

m2
h

8v2
h4 +

1

2c�h
χ2 . (3.5)

The kinetic energy terms are diagonalised via the field redefinitions h → h′ − χ′, χ → χ′,

and the mass terms can be then diagonalised by a subsequent symplectic rotation analogous

to that in eq. (2.5) (with Φ and ϕ replaced by h and χ, respectively), with a mixing angle

given by

tanh 2α =
−4x

1− 4x
, with x ≡ −c�hm2

h/2 . (3.6)

Finally, dropping the primes on the field notation and omitting again fermionic and gauge

kinetic terms, the Lagrangian reads:

Lh,χ =
1

2
∂µh∂

µh− 1

2
∂µχ∂

µχ+ LχY + Lχgauge − V (h, χ) , (3.7)

where, at first order in x,

LχY =− 1√
2

(Q̄LUYQR + h.c.) [v + (h− χ) (1 + 2x)] , (3.8)

Lχgauge =− 1

4
Tr[VµV

µ]
[
v2 + 2v(1 + 2x)(h− χ) + (1 + 4x)(h− χ)2

]
, (3.9)

while the scalar potential V (h, χ) coincides with that given in eq. (2.12).
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Integrating out the heavy scalar. For small x (that is, χ mass large compared to the

Higgs mass), the first order EOM can be used to integrate out the LW partner,

χ̄ =
c�h
2

[√
2(Q̄LUYQR + h.c.) + Tr[VµV

µ](v + h) +
m2
h

v2
h2(h+ 3v)

]
+O(c2

�h) . (3.10)

While the masses of the gauge and fermion fields are unaffected by the presence of P�h,

the Higgs mass renormalization absorbs the correction

δm2
h

m2
h

= 2x . (3.11)

The resulting effective Lagrangian for the h field is given by (omitting kinetic terms other

than the Higgs one)

L�h =
1

2
∂µh∂

µh+ LY�h + L4F
�h + Lgauge

�h − V�h(h) , (3.12)

with

LY�h =− v + h√
2

(
Q̄LUYQR + h.c.

) (
1 +

x

v2
(h2 + 2vh)

)
− x

m2
h

(v + h)√
2

Tr[VµV
µ]
(
Q̄LUYQR + h.c.

)
, (3.13)

L4F
�h =− x

2m2
h

(
Q̄LUYQR + h.c.

)2
, (3.14)

Lgauge
�h =− (v + h)2

4
Tr[VµV

µ]
(

1 + 2
x

v2
(h2 + 2vh)

)
− x

4m2
h

Tr[VµV
µ]2(v + h)2 , (3.15)

V�h(h) =
m2
h

2
h2 +

m2
h

2v
(1 + 4x)h3 +

m2
h

8v2
(1 + 24x)h4 + x

m2
h

2v3

(
3h5 +

1

2v
h6

)
. (3.16)

LY�h above shows that anomalous gauge-fermion interactions weighted by Yukawas are ex-

pected in the non-linear realization, in addition to the pure Yukawa-like corrections present

in the linear expansion, see eq. (2.16). Furthermore, the potential V�h(h) in eq. (3.16)

matches exactly the potential in eq. (2.18) for the linear case, as it should, exhibiting

higher than quartic Higgs couplings that requires c�h < 0 (i.e., x > 0) for the stability of

the potential.

In summary, the resulting effective Lagrangian for the non-linear case in eqs. (3.12)–

(3.16) shows deviations from SM expectations in fermion-Higgs couplings, four-fermion

interactions and scalar properties, a pattern already found in the previous section for an

elementary Higgs. Nevertheless, important distinctive features appear with respect to the

case of a higher derivative kinetic term for a Higgs particle in linearly realised EWSB:

• The number of effective couplings modified is larger than in the linear case in

eqs. (2.15)–(2.18), a characteristic feature already explored previously in other set-

tings [20].
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Figure 2. The scalar potential in the chiral Lagrangian for different values of the coefficient v2c�h.

The solid red line denotes the SM and the interline spacing is ∆(v2c�Φ) = 7.5 · 10−5.

• Specifically, couplings involving gauge particles are now modified with respect to their

SM values; in addition to anomalous gauge-fermion interactions, particularly inter-

esting anomalous Higgs couplings to two (HVV) and three gauge bosons (HVVV),

two Higgs-two gauge bosons (HHVV) and quartic gauge couplings (VVVV) are ex-

pected. The pure-gauge and gauge-Higgs anomalous couplings will be analyzed in

detail in the next sections; they constitute a new tool to disentangle experimentally

an elementary versus a dynamical nature of the Higgs particle, in the presence of

higher-derivative kinetic terms.

3.2 Analysis via EOM

The alternative method of applying directly to the operator P�h in the original non-linear

Lagrangian eq. (3.1) the standard field theory EOM for the h field,

�h = −δV (h)

δh
− v + h

2
Tr[VµV

µ]− 1√
2

(
Q̄LUYQR + h.c.

)
, (3.17)

leads to the same effective low-energy Lagrangian at first order on c�h than that in

eqs. (3.12)–(3.16), obtained above via the LW procedure, as it can be easily checked.

Again, the correction to the scalar potential requires to impose c�h < 0 to ensure that the

potential remains bounded from below.

Higgs potential. Figure 2 shows the dependence of the shape of the scalar potential

on the perturbative parameter c�h: for negative values the SM vacuum 〈h〉 = 0 is still a

minimum, while for positive values the potential is not bounded from below and moreover

the SM vacuum is turned into a maximum.
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4 Chiral versus linear effective operators

The linear operator O�Φ involves gauge fields in its structure - see eq. (1.1), contrary to

the chiral effective operator P�h defined in eq. (1.2). Nevertheless, the addition of the

former operator to the SM Lagrangian turned out to give no contribution to couplings

involving gauge fields, while the chiral operator P�h does. This seemingly paradoxical

state of affairs and the consistency of the results can be ascertained by establishing the

exact correspondence between both operators, which we find to be given by:

O�Φ =
1

2
(�h)2 +

(v + h)2

8
(Tr[VµV

µ])2 +
v + h

2
Tr[VµV

µ]∂ν∂
νh− Tr[VµVν ]∂µh∂νh

− (v + h)2

4
Tr[(DµV

µ)2]− (v + h)Tr[VνDµV
µ]∂νh (4.1)

= P�h + v2

(
1

8
P6 +

1

4
P7 − P8 −

1

4
P9 −

1

2
P10

)
linearF

.

The right hand-side of eq. (4.1) describes a combination of the non-linear operator P�h and

a particular set of independent effective operators of the non-linear basis as determined in

ref. [20], defined by

P6 = (Tr[VµV
µ])2 F6(h) , P7 = Tr[VµV

µ]�F7(h) ,

P8 = Tr[VµVν ] ∂µF8(h)∂νF ′8(h) , P9 = Tr[(DµV
µ)2]F9(h) ,

P10 = Tr[VνDµV
µ] ∂νF10(h) ,

(4.2)

where the generic -model dependent- Fi(h) functions are often parametrised as [17, 20]

Fi(h) = 1 + 2ai
h

v
+ bi

h2

v2
. . . (4.3)

The subscript “linearF” in the right-hand side of eq. (4.1) indicates that the equality

holds when the arbitrary functions Fi(h) take the specific linear-like dependence — see

ref. [20]2

F6(h) = F7(h) = F9(h) = F10(h)
linearF

= (1+h/v)2 , F8(h) = F ′8(h)
linearF

= (1+h/v) .

(4.4)

Strictly speaking, in a general chiral Lagrangian the definition of P�h should also contain

a F�h(h) factor on the right hand side of eq. (1.2) [19, 20]; it would be superfluous to keep

track of F�h(h) here, though, as we will restrain the analysis to couplings involving at

most two Higgs particles, which is tantamount to setting F�h(h) = 1 in the phenomeno-

logical analysis.

Taken separately, P�h as well as each of the five operators in eq. (4.2) do induce

deviations on the SM expectations for couplings involving gauge bosons. Eq. (4.1) implies

2In that reference, powers of the ξ parameter — which refers to ratios of scales involved — were extracted

from the definition of the operator coefficients; we will refrain here from doing so, and adopt the simple

notation in eq. (1.4).
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nevertheless that the gauge contributions of these six operators will exactly cancel in any

physical observable when their relative weights are given by

v2c�h = 8c6 = 4c7 = −c8 = −4c9 = −2c10 . (4.5)

We have explicitly checked such cancellations in several examples of physical transitions;

appendix B describes the particular case of ZZ → ZZ scattering, for illustration.

5 Signatures and constraints

Tables 1, 2, 3, and 4 list all couplings involving up to four particles that receive contributions

from the effective linear operator O�Φ or any of its chiral siblings P�h and P6−10. We work

at first order in the operator coefficients, which are left arbitrary in those tables; the Fi(h)

functionals are also assumed generic as defined in eq. (4.3). For the sake of comparison,

a SM-like potential is taken for both the linear and chiral operators; the extension to a

general scalar potential for the chiral expansion can be found in appendix A and has no

significant impact.

It turns out that O�Φ gives no tree-level contribution to couplings involving gauge par-

ticles as argued earlier, while instead P�h and P6−10 are shown to have a strong impact on

a large number of gauge couplings. On the other side, anomalous four-fermion interactions

are induced by both O�Φ and P�h, even if with distinct patterns.

5.1 Effects from O�Φ

The only impact of O�Φ on present Higgs and gauge boson observables is to generate

the universal shift in the Higgs coupling to fermions shown in the first line of table 1.

Equivalently, in the notation in refs. [16, 24, 25, 27, 28], in which the deviations of the

Yukawa couplings and the gauge kinetic terms from SM predictions were parametrised as

LY ukawa ≡ −
v√
2

(
Q̄LUYQR + h.c.

)(
1 + c

h

v
+ . . .

)
, (5.1)

Lgauge−kinetic ≡ −
v2

4
Tr(VµV

µ)

(
1 + 2a

h

v
+ b

h2

v2
+ . . .

)
, (5.2)

the shift induced by the operator O�Φ reads

c ≡ κf ≡ 1 + ∆f = 1−m2
hc�Φ . (5.3)

while

a ≡ κV ≡ 1 + ∆V = 1 , b = 1 . (5.4)

In refs. [20, 29], a general analysis of the constraints on departures of the Higgs couplings

strength from SM expectations used all available collider and EW precision data, and it

was found that

− 0.55 ≤ ∆f ≤ 0.25 , (5.5)
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Fermionic couplings Coeff. SM value Chiral Linear: O�Φ

h
(
ūLYUuR + d̄LYDdR + h.c.

)
− 1√

2
1 −m2

hc�h −m2
hc�Φ

h2
(
ūLYUuR + d̄LYDdR + h.c.

)
− 1
v
√

2
− −3m2

h
2 c�h −3m2

h
2 c�Φ

ZµZ
µ
(
ūLYUuR + d̄LYDdR + h.c.

)
− g2v

4
√

2c2θ
− c�h −

W+
µ W

−µ (ūLYUuR + d̄LYDdR + h.c.
)

− g2v

2
√

2
− c�h −

(ūLYUuR)2 +
(
ūRY

†
UuL

)2
1
4 − c�h −

(ūLYUuR)
(
ūRY

†
UuL

)
1
2 − c�h 2c�Φ(

d̄LYDdR
)2

+
(
d̄RY

†
DdL

)2
1
4 − c�h −(

d̄LYDdR
) (
d̄RY

†
DdL

)
1
2 − c�h 2c�Φ

(ūLYUuR)
(
d̄RY

†
DdL

)
+ h.c. 1

2 − c�h −

(ūLYUuR)
(
d̄LYDdR

)
+ h.c. 1

2 − c�h 2c�Φ

(ūLYDdR)
(
d̄LYUuR

)
+ h.c. −1 − − c�Φ

(ūLYDdR)
(
d̄RY

†
DuL

)
+
(
d̄LYUuR

) (
ūRY

†
UdL

)
1 − − c�Φ

Table 1. Effective couplings involving fermions generated by the linear operator O�Φ and its

chiral siblings P�h and P6−10. For illustration only the couplings involving quark pairs are listed,

although similar interactions involving lepton pairs are induced.

at 90% CL after marginalizing over all other effective couplings. Eq. (5.5) constrainsm2
hc�Φ,

in addition to any combination of coefficients of other dimension-six operators which may

also modify universally the Higgs couplings to fermions, see for instance ref. [20].

When only O�Φ is added to the SM Lagrangian, eq. (5.5) translates into the bound

c�Φ . 1.6 · 10−5 GeV−2. This constraint is quantitatively quite weak, a fact due to present

sensitivity. For illustration, it could be rephrased as a lower limit of 250 GeV on the Higgs

doublet LW partner mass. It shows that the bound obtained is of the order of magnitude

of the constraints established by previous analyses, which considered direct production in

colliders and/or indirect contributions to EW precision data and flavour data [21, 30–36],

setting a lower bound for the LW scalar partner mass of 445 GeV.

5.2 Effects from P�h and P6−10

Tables 2, 3 and 4 illustrate that P�h generates tree-level corrections to the gauge boson self-

couplings, as well as to gauge-Higgs couplings. Note that some of these interactions would

not be induced by any d = 6 operator of a linear expansion, an example being the ZZZZ

interactions in table 2; other signals absent in both the SM and d = 6 linear expansions,

and thus unique to the leading order chiral expansion, can be found in appendix C. They

constitute a strong tool to disentangle a strong underlying EW dynamics from a linear one.
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VV, TGV and VVVV Coeff. SM value Chiral Linear: O�Φ

(∂µZ
µ)(∂νZ

ν) − g2

2c2θ
− c9 −

(∂µW
+µ)(∂νW

−ν) −g2 − c9 −

i(∂µW
−µ)(ZνW

+ν) + h.c. e2g
c2θ

− c9 −

i(∂µW
−µ)(AνW

+ν) + h.c. −eg2 − c9 −

(ZµZ
µ)2 g4

32c4θ
− v2c�h + 8c6 −

(
W+
µ W

−µ)2 −g2

2 1 −m2
W c�h − 2g2c6 −

(
W+
µ W

−µ) (ZνZ
ν) −g2c2

θ 1 −m2
Z

2 c�h − g2

c4θ
c6 −

(
W+
µ Z

µ
)

(W−ν Z
ν) g2c2

θ 1 − e2s2θ
c4θ
c9 −

(
W+
µ A

µ
)

(W−ν A
ν) e2g2 1 −c9 −

(
W+
µ A

µ
)

(W−ν Z
ν) + h.c. egcθ 1 e2

c2θ
c9 −

Table 2. Anomalous pure-gauge couplings involving two, three and four gauge bosons, induced by

the chiral operators P�h and P6−10, in contrast with the non-impact of their linear sibling O�Φ.

The effects stemming from the operators P6−10, which are also siblings of the linear

operatorO�Φ, are displayed in these tables for gauge two-point functions (VV), triple gauge

vertices (TGV) and VVVV couplings. As previously discussed, the tree-level contributions

to physical amplitudes induced by that set of chiral operators cancel if the conditions in

eqs. (4.4) and (4.5) are satisfied. Notwithstanding, for generic values of the coefficients

of P�h and P6−10, some signatures characteristic of a non-linearly realised electroweak

symmetry breaking are expected, as those discussed next.

From tables 3 and 1 it follows that P�h yields a universal correction to the SM Higgs

couplings to gauge bosons and fermions. Furthermore, in present Higgs data the Higgs

state is on-shell and, in this case, P7 gives also a correction to the SM-like HVV couplings,

while the modifications generated by P9 and P10 vanish for on-shell W and Z gauge bosons

or massless fermions. Thus these corrections can be cast as, in the notation of eqs. (5.1)

and (5.2),

a ≡ κV ≡ 1 + ∆V = 1−
m2
h

v2
(v2c�h + 4c7a7) , c ≡ κf ≡ 1 + ∆f = 1−m2

hc�h , (5.6)

with b7 = 0. The general constraints resulting from present Higgs and other data [20, 29]
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HVV and HVVV Coeff. SM value Chiral Linear: O�Φ

ZµZ
µh vg2

4c2θ
1 −m2

hc�h −

ZµZ
µ�h − g2

2c2θ
− 2c7a7

v −

(∂µZ
µ)(∂νZ

ν)h − g2

2c2θ
− 2c9a9

v −

(∂µZ
µ)(Zν∂

νh) − g2

2c2θ
− 2c10a10

v −

W+
µ W

−µh vg2

2 1 −m2
hc�h −

W+
µ W

−µ�h −g2 − 2c7a7
v −

(∂µW
+µ)(∂νW

−ν)h −g2 − 2c9a9
v −

(∂µW
+µ)(W−ν ∂

νh) + h.c. −g2

2 − 2c10a10
v −

i(∂µW
−µ)(ZνW

+ν)h+ h.c. e2g
c2θ

− 2c9a9
v −

i(∂µW
−µ)(AνW

+ν)h+ h.c. −eg2 − 2c9a9
v −

i(ZµW
+µ)(W−ν ∂

νh) + h.c. − e2g
2cθ

− 2c10a10
v −

i(AµW
+µ)(W−ν ∂

νh) + h.c eg2

2 − 2c10a10
v −

Table 3. Anomalous effective couplings of the Higgs particle to two or three gauge bosons, induced

by the chiral operators P�h and P6−10, in contrast with the non-impact of their linear sibling O�Φ.

apply as well here. For instance, if the coefficients of operators contributing only to the

SM-like HVV coupling — such as c7a7 above — cancel, the bound on ∆V and ∆f becomes,

at 90% CL,

− 0.33 ≤ ∆f = ∆V ≤ 0.33 , (5.7)

which translates into a bound c�h . 2.1 · 10−5 GeV−2.

Off-shell Higgs mediated gauge boson pair production. Potentially more interest-

ing, P7 leads to a new contribution to the production of electroweak gauge-boson pairs ZZ

and W+W− through

gg → h? → ZZ or W+W− , (5.8)

where the Higgs boson is off-shell [37, 38]. For the sake of illustration, we consider the ZZ

pair production with one Z decaying into e+e− while the other into µ+µ−. The left panel
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H2VV couplings Coeff. SM value Chiral Linear: O�Φ

ZµZ
µh2 g2

8c2θ
1 −5m2

hc�h −

ZµZ
µ�(h2) − g2

2c2θ
− c7b7

v2 −

ZµZν∂
µh∂νh − g2

2c2θ
− 4c8a8a′8

v2 −

(∂µZ
µ)(∂νZ

ν)h2 − g2

2c2θ
− c9b9

v2 −

(∂µZ
µ)(Zν∂

νh)h − g2

2c2θ
− 2c10b10

v2 −

W+
µ W

−µh2 g2

4 1 −5m2
hc�h −

W+
µ W

−µ�(h2) −g2 − c7b7
v2 −

W+
µ W

−
ν ∂

µh∂νh −g2 − 4c8a8a′8
v2 −

(∂µW
+µ)(∂νW

−ν)h2 −g2 − c9b9
v2 −

(∂µW
+µ)(W−ν ∂

νh)h+ h.c. −g2

2 − 2c10b10
v2 −

Table 4. Anomalous effective couplings involving two Higgs particles and two gauge bosons,

induced by the chiral operators P�h and P6−10, in contrast with the non-impact of their linear

sibling O�Φ.

of figure 3 depicts the leading-order SM contribution to

pp→ e+e−µ+µ− ,

together with the SM higher-order and P7 contributions through the ZZ channel in eq. (5.8).

The results presented in this figure were obtained assuming a center-of-mass energy at the

LHC of 13 TeV, and requiring that all leptons have transverse momenta in excess of 10 GeV,

that they are central (|η| < 2.5) and that the same-flavour opposite-charge lepton pairs

reconstruct the Z mass (|M`+`− −MZ | < 5 GeV). In presenting the P7 effects a coupling

c7a7 = 0.5 was assumed, which is compatible with the presently available Higgs data. Also,

since the goal here is to illustrate the effects of P7, we did not take into account the SM

higher-order contribution to gg → e+e−µ+µ− which interferes with the off-shell Higgs one;

for further details see ref. [39] and references therein.

The results in the left panel of the figure 3 show that P7 leads to an enhancement of

the off-shell Higgs cross section with respect to the SM expectations at high four-lepton

invariant masses. In fact, the scattering amplitude grows so fast that at some point uni-

tarity is violated [37], and the introduction of some unitarization procedure will tend to
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Figure 3. The left panel presents the four lepton invariant mass spectrum for the process pp →
e+e−µ+µ−. The right panel contains the WW transverse mass distribution of the process pp →
e+νeµ

−νµ. In both panels the black line stands for the SM leading-order contribution while the

blue (red) one represents the SM (P7) higher-order contribution given by eq. (5.8). In this figure

we assumed a center-of-mass energy of 13 TeV and c7a7 = 0.5.

diminish the excess. Nevertheless, even without an unitarization procedure, the expected

number of events above the leading order SM background induced by P7 is shown to be

very small, meaning that unraveling the P7 contribution will be challenging.

We have analyzed as well the process

pp→ e+νeµ
−νµ ,

that can proceed via the W+W− channel in eq. (5.8). In the right panel of figure 3 the

corresponding cross section is depicted as a function of the WW transverse mass

MWW
T =

[(√
(p`

+`′−
T )2 +m2

`+`′− +
√
/p2
T

+m2
`+`′−

)2

− (~p `+`′−
T + ~/pT )2

]1/2

, (5.9)

where ~/pT stands for the missing transverse momentum vector, ~p `+`′−
T is the transverse

momentum of the pair `+`′− and m`+`′− is the `+`′− invariant mass. Here ` = e or µ.

The transverse momentum and rapidity cuts used were the same than those for the left

panel. As expected, an enhancement of the gg → e+νeµ
−νµ cross section is induced by the

operator P7. Analogously to the case of ZZ production, the SM leading-order contribution

dominates but for large MWW
T ; the expected signals from the excess due to P7 will be thus

very difficult to observe.

Corrections to four gauge boson scattering. As can be seen in tables 2 and 3

the combination v2c�h + 8c6 generates the anomalous quartic vertex ZZZZ that is not

present in the SM. Moreover, the same combination gives anomalous contributions to the

ZZW+W− and W+W−W+W−. These are genuinely four gauge boson effects which do not

induce any modification to triple gauge boson couplings and, therefore, these coefficients

are much less constrained at present.
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Nowadays the most stringent bounds on the coefficients of these operators are indirect,

from their one-loop contribution to the electroweak precision data [40], in particular to α∆T

which at 90% CL imply

− 0.23 ≤ 1

8
v2c�h + c6 ≤ 0.26 . (5.10)

At the LHC with 13-14 TeV center-of-mass energy, they can be detected or constrained by

combining their impact on the VBF channels

pp→ jjW+W− and pp→ jj(W+W+ +W−W−) , (5.11)

where j stands for a tagging jet and the final state W ’s decay into electron or muon plus

neutrino [41]; the attainable 99% CL limits on these couplings are

− 1.2 · 10−2 ≤ 1

8
v2c�h + c6 < 10−2 . (5.12)

Disregarding the contribution from c6, this would translate into c�h . 1.3 · 10−6 GeV−2,

which would suggest a sensitivity to the mass of the LW partner for the singlet Higgs in

the chiral EWSB realization up to ∼ 887 GeV.

Strictly speaking, the relevant four gauge boson cross-section also receives modifica-

tions induced by those operators which correct the HVV and TGV vertices when the Higgs

boson or a gauge boson is exchanged in the s, t or u channels. In principle, these “triple

vertex” effects can be discriminated from the purely VVVV effects by their different de-

pendence on the scattering angle of the final state gauge bosons. In practice, a detailed

simulation will be required to establish the final sensitivity to all relevant coefficients.

6 Conclusions

An effective coupling for bosons which is tantamount to a quartic kinetic energy is a full-

rights member of the tower of leading effective operators accounting for BSM physics in

a model-independent way. This is so in both the linear and non-linear realizations of

electroweak symmetry breaking, or in other words irrespective of whether the light Higgs

particle corresponds to an elementary or a composite (dynamical) Higgs. The correspond-

ing higher derivative kinetic couplings, denoted here O�Φ and P�h, respectively, eqs. (1.1)

and (1.2), are customarily not considered but traded by others (e.g. fermionic ones) instead

of being kept as independent elements of a given basis.

It is most pertinent to analyze those couplings directly, though, as they are related

to intriguing and potentially very important solutions to ultraviolet issues, such as the

electroweak gauge hierarchy problem. The field theory challenges they rise constitute as

well a fascinating theoretical conundrum. Their theoretical impact is “diluted” and hard

to track, though, when they are traded by combinations of other operators. On top of

which, the present LHC data offer increasingly rich and precise constraints on gauge and

gauge-Higgs couplings, up to the point of becoming competitive with fermionic bounds

in constraining BSM theories; this trend may be further strengthened with the post-LHC

facilities presently under discussion.
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We have analyzed and compared in this paper O�Φ and P�h, unravelling theoretical

and experimental distinctive features.

On the theoretical side, two analyses have been carried in parallel and compared:

i) the Lee-Wick procedure of trading the second pole in the propagator by a “ghost”

scalar partner; ii) the application of the EOM to the operator, trading it by other effective

operators and resulting in an analysis which only requires standard field-theory tools. Both

paths have been shown to be consistent, producing the same effective Lagrangian at leading

order in the operator coefficient dependence.

A most interesting property is that the physical impact differs for linearly versus non-

linear EWSB realizations: departures from SM values for quartic-gauge boson, Higgs-gauge

boson and fermion-gauge boson couplings are expected only for the case of a dynamical

Higgs, i.e. only from P�h while not from O�Φ; in addition, they induce a different pattern

of deviations on Yukawa-like fermionic couplings and on the Higgs potential.

Note that these distinctive signals of a dynamical origin of the Higgs particle would be

altogether missed if a d = 6 linear effective Lagrangian was used to evaluate the possible

impact of an underlying strong dynamics, showing that in general a linear approach is not

an appropriate tool to the task. Indeed, for completeness we identified all TGV, HVV

and VVVV experimental signals which are unique in resulting from the leading chiral

expansion, while they cannot be induced neither by SM couplings at tree-level nor by

d = 6 operators of the linear expansion: the TGV couplings ∆gγ6 , ∆gZ5 and ∆gZ6 , the HVV

couplings ∆g
(4)
HV V , ∆g

(5)
HV V and ∆g

(6)
HV V and the VVVV couplings ∆g

(1)
ZZ and ∆g

(5)
γZ , with

the quartic kinetic energy coupling for non-linear EWSB scenarios P�h contributing only

to ∆g
(1)
ZZ among the above. The experimental search of that ensemble of couplings and

their correlations (see tables 5, 6 and 7 in appendix C), constitute a superb window into

chiral dynamics associated to the Higgs particle.

To tackle the origin of the different physical impact of quartic derivative Higgs kinetic

terms depending on the type of EWSB, we have explored and established the precise

relation between the two couplings: it was shown that O�Φ corresponds to a specific

combination of P�h with five other non-linear operators.

On the phenomenological analysis, the impact of O�Φ, P�h and P6−10 has been scru-

tinised. All LHC Higgs and other data presently available were used to constrain the

O�Φ and P�h coupling strengths. Moreover, the impact of future 14 TeV LHC data on

pp → 4 leptons has been explored; the operators under scrutiny intervene in the process

via off-shell Higgs mediation in gluon-gluon fusion, gg → h? → ZZ or W+W−, inducing

excesses at high four-lepton invariant masses via the ZZ channel, and at high values of

the WW invariant mass in the WW channel. The corrections expected at LHC through

their impact on four gauge boson scattering, extracted combining information from vector

boson fusion channels, pp → jjW+W− and pp → jj(W+W+ + W−W−), has been also

discussed. The possibility that LHC may shed light on Lee-Wick theories through the type

of analysis and signals discussed here is a fascinating perspective.
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A Analysis with a generic chiral potential V (h)

In the analysis performed in this paper the effective operators P�h and O�Φ are assumed

to be the only departures from the Standard Model present in the chiral and linear La-

grangians, respectively. However, the choice of a SM-like scalar potential might not appear

satisfactory for the chiral case: a priori V (h) is a completely generic polynomial in the

singlet field h, and the current lack of direct measurements of the triple and quartic self-

couplings of the Higgs boson leaves room for a less constrained parametrization.

Therefore, it can be interesting to test the stability of our results against deviations of

the scalar potential from the SM pattern. To do this, we apply the Lee-Wick method to

the Lagrangian in eq. (3.1) although with the SM-like potential in eq. (2.3) replaced by a

generic one,

V (h) = a1h+
m2
h

2
a2h

2 +
m2
h

2v
a3h

3 +
m2
h

8v2
a4h

4 , (A.1)

where we choose to omit higher h-dependent terms, as the analysis remains at tree level

and limited to interactions involving at most two Higgs particles. The correction factor a2

can always be reabsorbed in the definition of mh, and will thus be fixed from the start to

a2 = 1 .

The comparison with the case described in section 3 is straightforward choosing, in addition,

a3 = a4 = 1 and a1 = 0. The resulting mass-diagonal Lagrangian containing the LW field

χ is:

Lχ = (kin. terms) + LχY + Lχgauge − V (h, χ) , (A.2)
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with

LχY = − 1√
2

(Q̄LUYQR + h.c.) [1 + (1 + 2x)(h− χ)] , (A.3)

Lχgauge = −1

4
Tr[VµV

µ]
[
v2 + 2v(1 + 2x)(h− χ) + (1 + 4x)(h− χ)2

]
, (A.4)

V (h, χ) = a1(1 + 2x)(h− χ) +
m2
h

2
(1 + 2x)h2 +

m2
h

2

(
1− 1

2x
+ 2x

)
χ2

+
m2
h

2v
a3(1 + 6x)(h− χ)3 +

m2
h

8v2
a4(1 + 8x)(h− χ)4 , (A.5)

where x = −c�hm2
h/2 > 0.

Upon integrating out the heavy LW ghost, the following renormalized

Lagrangian results:

L�h =
1

2
∂µh∂

µh− 1

4
ZµνZ

µν − 1

2
W+
µνW

−µν + iQ̄ /DQ +Lfer.
�h + Lgauge

�h − V�h(h) , (A.6)

where

Lfer.
�h =− 1√

2

(
Q̄LUYQR + h.c.

) [
v + (1 + 2x)h+ 3a3x

h2

v
+ a4x

h3

v2

]
(A.7)

− x

2m2

(
Q̄LUYQR + h.c.

)2 − x

m2
h

v + h√
2

Tr[VµV
µ]
(
Q̄LUYQR + h.c.

)
,

Lgauge
�h =− 1

4
Tr[VµV

µ]

[
(v + h)2

(
1 + 4x

h

v
+ 2xh2

)
(A.8)

+ 2x(v + h)
h2

v2
(3v(a3 − 1) + h(a4 − 1))

]
− x

4m2
h

(v + h)2 Tr[VµV
µ]2 ,

V�h(h) =
m2
h

2
h2 + a1(1 + 2x)h+

m2
h

2v

[
a3(1 + 4x) +

2a1x

m2
hv

(a4 + a3 − 3a2
3)

]
h3 (A.9)

+
m2
h

8v2

[
a4(1 + 6x) + 2x

(
9a2

3 +
a1a4

m2v
(2− 3a3)

)]
h4 +

3a3a4m
2
hx

2v3
h5 +

a2
4m

2
hx

4v4
h6 .

Phenomenological impact. Assuming that the departures from unity of the ai param-

eters are small (of order c�h at most), we can replace

a1 → ∆a1 , ai → 1 + ∆ai , i = 3, 4 (A.10)

and expand the renormalized Lagrangian (A.6) up to first order in x and in the ∆i’s.

Restricting for practical reasons to vertices with up to four legs, the list of couplings that

are modified is very reduced and only includes terms in the scalar potential:

−
m2
h

2v
(1 + 4x+ ∆a3)h3 ,

−
m2
h

8v2
(1 + 24x+ ∆a4)h4 ,

−∆a1h .

(A.11)

In consequence, upon the assumption that possible departures of the scalar potential from

a SM-like form are quantitatively at most of the same order as c�h, those contributions

would not affect the numerical analysis presented in the text.
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B Impact of O�Φ versus P�h on ZZ → ZZ scattering

This appendix provides an illustrative example of how the contributions of the chiral oper-

ators P�h ,P6−10 to physical amplitudes combine to reproduce those of the linear operator

O�Φ, once the conditions (4.5) and (4.4) are imposed.

Let us consider the elastic scattering of two Z gauge bosons. This process is not

affected by O�Φ, therefore the corrections induced by the six chiral operators are expected

to cancel exactly, upon assuming (4.5) and (4.4).

Assuming the external Z bosons are on-shell, the only Feynman diagrams containing

deviations from the Standard Model are the following

As +At +Au =
h

Z2

Z1

Z4

Z3

+ h

Z2

Z1

Z4

Z3

+ h

Z2

Z1

Z3

Z4

(B.1)

A4Z =

Z1

Z2

Z3

Z4

(B.2)

For the amplitudes depicted in (B.1), the relevant couplings are ZZh and ZZ�h (see

table 3), and the contributions from each channel turn out to be

As = −(ε1 · ε2)(ε∗3 · ε∗4)
i

s−m2
h

4m4
Z

v2

(
1− 2m2

hc�h +
8s

v2
c7a7

)
, (B.3)

At = −(ε1 · ε∗3)(ε2 · ε∗4)
i

t−m2
h

4m4
Z

v2

(
1− 2m2

hc�h +
8s

v2
c7a7

)
, (B.4)

Au = −(ε1 · ε∗4)(ε∗3 · ε2)
i

u−m2
h

4m4
Z

v2

(
1− 2m2

hc�h +
8s

v2
c7a7

)
, (B.5)

where ε1, ε2 denote the polarizations of the incoming Z bosons, and ε∗3, ε
∗
4 those of the

outgoing ones.

Imposing the constraints c7 = v2c�h/4, from eq. (4.5) and a7 = 1 from eq. (4.4),

the dependence on the exchanged momentum drops from the non-standard part of the

amplitudes:

Ah = As +At +Au = −
4im4

Z

v2

[
(ε1 · ε2)(ε∗3 · ε∗4)

s−m2
h

+
(ε1 · ε∗3)(ε2 · ε∗4)

t−m2
h

+
(ε1 · ε∗4)(ε2 · ε∗3)

u−m2
h

]
−

8im4
Z

v2
c�h

[
(ε1 · ε2)(ε∗3 · ε∗4) + (ε1 · ε∗3)(ε2 · ε∗4) + (ε1 · ε4)(ε2 · ε∗3)

]
.

(B.6)

The diagram (B.2) contains only the four-point vertex ZZZZ (see table 2), and gives

A4Z =
32im4

Z

v4

(
c6 +

v2

8
c�h

)[
(ε1 · ε2)(ε∗3 · ε∗4) + (ε1 · ε∗3)(ε2 · ε∗4) + (ε1 · ε4)(ε2 · ε∗3)

]
=

8im4
Z

v2
c�h

[
(ε1 · ε2)(ε∗3 · ε∗4) + (ε1 · ε∗3)(ε2 · ε∗4) + (ε1 · ε4)(ε2 · ε∗3)

]
.

(B.7)

In the second line the condition (4.5) has been assumed, which imposes v2c�h = 8c6.
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The neat correction to the Standard Model amplitude for ZZ scattering induced by

the chiral operators P�h ,P6−10 is finally proved to vanish, as

∆A = ∆Ah +A4Z = 0 . (B.8)

C Chiral versus linear couplings

In this appendix, we gather the departures from SM couplings in TGV, HVV and VVVV

vertices, which are expected from the leading order tower of chiral scalar and/or gauge

operators (which includes P�h and P6−10 discussed in this manuscript), as well as from

any possible chiral or d = 6 linear coupling which may affect those same vertices at leading

order of the respective effective expansions. Their comparison allows a straightforward

identification of which signals may point to a strong dynamics underlying EWSB, being

free from SM or d = 6 linear operators contamination. In tables 5, 6 and 7 below:

• The O�Φ , P�h and P6−10 operators are defined as in eqs. (1.1), (1.2)and (4.2), while

for all other couplings mentioned — linear or chiral — the naming follows that in

ref. [20], to which we refer the reader.

• All operator coefficients appearing in the tables below are defined as in eq. (1.4).

In comparison with the definitions in ref. [20] this means that: i) the coefficient

of the chiral operator P�h has been rescaled, see footnotes 1 and 2; ii) the d = 6

linear operator coefficients fi in refs. [20, 29] are related to those in the tables below

as follows:

ci = fi/Λ
2 . (C.1)

As discussed in the text, new anomalous vertices related to a quartic kinetic energy for the

Higgs particle include as well HHVV couplings and new corrections to fermionic vertices.

We leave for a future publication the corresponding comparison between the complete

linear and chiral bases. When referring below to the SM, only tree-level contributions are

considered.

C.1 TGV couplings

The CP-even sector of the Lagrangian that describes TGV couplings can be parametrized as

LWWV =− igWWV

{
gV1

(
W+
µνW

−µV ν −W+
µ VνW

−µν
)

+ κVW
+
µ W

−
ν V

µν (C.2)

− igV5 εµνρσ
(
W+
µ ∂ρW

−
ν −W−ν ∂ρW+

µ

)
Vσ + gV6

(
∂µW

+µW−ν− ∂µW−µW+ν
)
Vν

}
,

where V ≡ {γ, Z} and gWWγ ≡ e = g sin θW , gWWZ = g cos θW . The SM values for

the phenomenological parameters defined in this expression are gZ,γ1 = κZ,γ = 1 and

gZ,γ5 = gZ,γ6 = 0. The resulting TGV corrections are gathered in table 5. For instance, while

∆gγ6 and ∆gZ6 cannot be induced by any linear d = 6 operators, they receive contributions

from the operators P6−10 discussed in this manuscript. Barring fine-tunings and one-loop

effects, a detection of such couplings with sizeable strength would point to a non-linear

realization of EWSB.
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Coeff. Chiral Linear

×e2/s2
θ ×v2

∆κγ 1 −2c1 + 2c2 + c3 − 4c12 + 2c13
1
8(cW + cB − 2cBW )

∆gγ6 1 −c9 −

∆gZ1
1
c2θ

s22θ
4e2c2θ

cT +
2s2θ
c2θ
c1 + c3

1
8cW +

s2θ
4c2θ

cBW −
s22θ

16e2c2θ
cΦ,1

∆κZ 1
s2θ

e2c2θ
cT +

4s2θ
c2θ
c1 −

2s2θ
ct2
c2 + c3 − 4c12 + 2c13

1
8cW −

s2θ
8ct2

cB +
s2θ

2c2θ
cBW −

s2θ
4e2c2θ

cΦ,1

∆gZ5
1
c2θ

c14 −

∆gZ6
1
c2θ

s2
θc9 − c16 −

Table 5. Effective couplings parametrizing the VW+W− vertices defined in eq. (C.2). The co-

efficients in the second column are common to both the chiral and linear expansions. The third

column lists the specific contributions from the operators in the chiral basis. For comparison, the

last column exhibits the corresponding contributions from linear d = 6 operators.

C.2 HVV couplings

The Higgs to two gauge bosons couplings can be phenomenologically parametrized as

LHVV ≡ gHgg GaµνGaµνh+ gHγγ AµνA
µνh+ g

(1)
HZγ AµνZ

µ∂νh+ g
(2)
HZγ AµνZ

µνh

+ g
(1)
HZZ ZµνZ

µ∂νh+ g
(2)
HZZ ZµνZ

µνh+ g
(3)
HZZ ZµZ

µh+ g
(4)
HZZ ZµZ

µ�h

+ g
(5)
HZZ ∂µZ

µZν∂
νh+ g

(6)
HZZ ∂µZ

µ∂νZ
νh (C.3)

+ g
(1)
HWW

(
W+
µνW

−µ∂νh+ h.c.
)

+ g
(2)
HWW W+

µνW
−µνh+ g

(3)
HWW W+

µ W
−µh

+ g
(4)
HWW W+

µ W
−µ�h+ g

(5)
HWW

(
∂µW

+µW−ν ∂
νh+ h.c.

)
+ g

(6)
HWW ∂µW

+µ∂νW
−νh ,

where Vµν = ∂µVν − ∂νVµ with V = {A,Z,W,G}. Separating the contributions into SM

ones plus corrections, g
(j)
i ' g

(j)SM
i + ∆g

(j)
i , it turns out that

g
(3)SM
HZZ =

m2
Z

v
, g

(3)SM
HWW =

2m2
Zc

2
θ

v
, (C.4)

while the tree-level SM value for all other couplings in eq. (C.3) vanishes.

While P�h may induce a departure from SM expectations in two HVV couplings,

∆g
(3)
HZZ and ∆g

(3)
HWW , table 6 shows that those signals could be mimicked by some d = 6

linear operators. On the contrary, a putative detection of ∆g
(4)
HV V couplings may arise from

the P7 operator discussed in this manuscript while neither from the SM not any linear d = 6

couplings, and would thus be a smoking gun for a non-linear nature of EWSB realization;

the same applies to ∆g
(5)
HV V from P10, and to ∆g

(6)
HV V from P9.
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Coeff. Chiral Linear

×e2/4v ×v2

∆gHgg
g2
s
e2

−2cGaG −4cGG

∆gHγγ 1 −2(cBaB + cWaW ) + 8c1a1 + 8c12a12 −(cBB + cWW ) + cBW

∆g
(1)
HZγ

1
s2θ

−8(c5a5 + 2c4a4)− 16c17a17 2(cW − cB)

∆g
(2)
HZγ

cθ
sθ

4
s2θ
c2θ
cBaB − 4cWaW + 8 c2θ

c2θ
c1a1 + 16c12a12 2

s2θ
c2θ
cBB − 2cWW + c2θ

c2θ
cBW

∆g
(1)
HZZ

1
c2θ

−4
c2θ
s2θ
c5a5 + 8c4a4 − 8

c2θ
s2θ
c17a17

c2θ
s2θ
cW + cB

∆g
(2)
HZZ − c2θ

s2θ
2
s4θ
c4θ
cBaB + 2cWaW + 8

s2θ
c2θ
c1a1 − 8c12a12

s4θ
c4θ
cBB + cWW +

s2θ
c2θ
cBW

∆g
(3)
HZZ

m2
Z
e2

−2cH + 2cC(2aC − 1)− 8cT (aT − 1)− 4m2
hc�h cΦ,1 + 2cΦ,4 − 2cΦ,2

∆g
(4)
HZZ − 1

s22θ
16c7a7 + 32c25a25 −

∆g
(5)
HZZ − 1

s22θ
16c10a10 + 32c19a19 −

∆g
(6)
HZZ − 1

s22θ
16c9a9 + 32c15a15 −

∆g
(1)
HWW

1
s2θ

−4c5a5 cW

∆g
(2)
HWW

1
s2θ

−4cWaW −2cWW

∆g
(3)
HWW

m2
Zc

2
θ

e2
−4cH + 4cC(2aC − 1) + 32e2

c2θ
c1 +

16c2θ
c2θ

cT − 8m2
hc�h −

32e2

s2θ
c12

−2(3c2θ−s
2
θ)

c2θ
cΦ,1 + 4cΦ,4 − 4cΦ,2 + 4e2

c2θ
cBW

∆g
(4)
HWW − 1

s2θ
8c7a7 −

∆g
(5)
HWW − 1

s2θ
4c10a10 −

∆g
(6)
HWW − 1

s2θ
8c9a9 −

Table 6. Higgs-gauge bosons couplings as defined in eq. (C.3). The coefficients in the second

column are common to both the chiral and linear expansions.The third column lists the specific

contributions from the operators in the chiral basis. For comparison, the last column exhibits the

corresponding contributions from linear d = 6 operators.

C.3 VVVV couplings

The effective Lagrangian for VVVV couplings reads

L4X ≡ g2

{
g

(1)
ZZ(ZµZ

µ)2 + g
(1)
WW W+

µ W
+µW−ν W

−ν − g
(2)
WW (W+

µ W
−µ)2

+ g
(3)
V V ′W

+µW−ν
(
VµV

′
ν + V ′µVν

)
− g

(4)
V V ′W

+
ν W

−νV µV ′µ

+ ig
(5)
V V ′e

µνρσW+
µ W

−
ν VρV

′
σ

}
,

(C.5)

where V V ′ = {γγ, γZ, ZZ}. At tree-level in the SM, the following couplings are non-

vanishing:

g
(1)SM
WW =

1

2
, g

(2)SM
WW =

1

2
, g

(3)SM
ZZ =

c2
θ

2
, g(3)SM

γγ =
s2
θ

2
,

g
(3)SM
Zγ =

s2θ

2
, g

(4)SM
ZZ = c2

θ , g(4)SM
γγ = s2

θ , g
(4)SM
Zγ = s2θ ,

(C.6)

table 7 shows the impact on the couplings in eq. (C.5) of the leading non-linear versus linear

operators. While P�h and P6 may induce ∆g
(2)
WW and ∆g

(4)
ZZ couplings, the table shows
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Coeff. Chiral Linear

×e2/4s2
θ ×v2

∆g
(1)
WW 1

s22θ
e2c2θ

cT +
8s2θ
c2θ
c1 + 4c3 + 2c11 − 16c12 + 8c13

cW
2 +

s2θ
c2θ
cBW −

s22θ
4c2θe2

cΦ1

∆g
(2)
WW 1

s22θ
e2c2θ

cT +
8s2θ
c2θ
c1 + 4c3 − 4c6 − v2

2 c�h − 2c11 − 16c12 + 8c13
cW
2 +

s2θ
c2θ
cBW −

s22θ
4c2θe2

cΦ1

∆g
(1)
ZZ

1
c4θ

c6 + v2

8 c�h + c11 + 2c23 + 2c24 + 4c26 −

∆g
(3)
ZZ

1
c2θ

s22θc
2
θ

e2c2θ
cT +

2s22θ
c2θ

c1 + 4c2
θc3 − 2s4

θc9 + 2c11 + 4s2
θc16 + 2c24

cW c2θ
2 +

s22θ
4c2θ

cBW −
s22θc

2
θ

4e2c2θ
cΦ1

∆g
(4)
ZZ

1
c2θ

2s22θc
2
θ

e2c2θ
cT +

4s22θ
c2θ

c1 + 8c2
θc3 − 4c6 − v2

2 c�h − 4c23 cW c
2
θ + 2

s22θ
4c2θ

cBW −
s22θc

2
θ

2e2c2θ
cΦ1

∆g
(3)
γγ s2

θ −2c9 −

∆g
(3)
γZ

sθ
cθ

s22θ
e2c2θ

cT +
8s2θ
c2θ
c1 + 4c3 + 4s2

θc9 − 4c16
cW
2 +

s2θ
c2θ
cBW −

s22θ
4c2θe2

cΦ1

∆g
(4)
γZ

sθ
cθ

2s22θ
e2c2θ

cT +
16s2θ
c2θ

c1 + 8c3 cW + 2
s2θ
c2θ
cBW −

s22θ
2c2θe2

cΦ1

∆g
(5)
γZ

sθ
cθ

8c14 −

Table 7. Effective couplings parametrizing the vertices of four gauge bosons defined in eq. (C.5).

The third column lists the specific contributions from the operators in the chiral basis. For com-

parison, the last column exhibits the corresponding contributions from linear d = 6 operators.

that those signals could be mimicked by some d = 6 linear operators. On the contrary, the

4Z coupling ∆g
(1)
ZZ is induced by P�h, while it vanishes in the SM and in any linear d = 6

expansion. A detection of ∆g
(1)
ZZ would thus be a beautiful smoking gun of a non-linear

nature of EWSB realization, which may simultaneously indicate a quartic kinetic energy

for the Higgs scalar of LW theories (although ∆g
(1)
ZZ may also be induced by other chiral

operators, including P6 as discussed towards the end of section 5).

Summarising this appendix, some experimental signals are unique in resulting from

the leading chiral expansion, while they cannot be induced neither by the SM at tree-level

nor by d = 6 operators of the linear expansion; among those analyzed here they are

• the TGV couplings ∆gγ6 , ∆gZ5 , and ∆gZ6 ,

• the HVV couplings ∆g
(4)
HV V , ∆g

(5)
HV V , and ∆g

(6)
HV V ,

• the VVVV couplings ∆g
(1)
ZZ , and ∆g

(5)
γZ ,

with the quartic kinetic energy coupling for non-linear EWSB scenarios P�h contributing

only to ∆g
(1)
ZZ among the above. ∆g

(3)
γγ does not receive contributions from d = 6 linear

operators, but it is induced by three-level SM effects. The experimental search of that

ensemble of couplings, with the correlations among them following from tables 5, 6 and 7,

constitute a fascinating window into chiral dynamics associated to the Higgs particle.
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