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eInstitució Catalana de Recerca i Estudis Avançats (ICREA),
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Abstract: The pattern of deviations from Standard Model predictions and couplings is

different for theories of new physics based on a non-linear realization of the SU(2)L×U(1)Y
gauge symmetry breaking and those assuming a linear realization. We clarify this issue in

a model-independent way via its effective Lagrangian formulation in the presence of a light

Higgs particle, up to first order in the expansions: dimension-six operators for the linear

expansion and four derivatives for the non-linear one. Complete sets of gauge and gauge-

Higgs operators are considered, implementing the renormalization procedure and deriving

the Feynman rules for the non-linear expansion. We establish the theoretical relation and

the differences in physics impact between the two expansions. Promising discriminating

signals include the decorrelation in the non-linear case of signals correlated in the linear

one: some pure gauge versus gauge-Higgs couplings and also between couplings with the

same number of Higgs legs. Furthermore, anomalous signals expected at first order in the

non-linear realization may appear only at higher orders of the linear one, and vice versa.

We analyze in detail the impact of both type of discriminating signals on LHC physics.
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1 Introduction

The present ensemble of data does not show evidence for new exotic resonances and points

to a scenario compatible with the Standard Model (SM) scalar boson (so-called “Higgs” for

short) [1–3]. Either the SM is all there is even at energies well above the TeV scale, which

would raise a number of questions about its theoretical consistency (electroweak hierarchy

problem, triviality, stability), or new physics (NP) should still be expected around or not

far from the TeV scale.

This putative NP could be either detected directly or studied indirectly, analysing the

modifications of the SM couplings. To this aim, a rather model-independent approach

is that of Lorentz and gauge-invariant effective Lagrangians, which respect a given set of

symmetries including the low-energy established ones. These effective Lagrangians respect

– 1 –



J
H
E
P
0
3
(
2
0
1
4
)
0
2
4

symmetries in addition to U(1)em and Lorentz invariance and as a consequence they relate

and constrain phenomenological couplings [4] based only on the latter symmetries.

With a light Higgs observed, two main classes of effective Lagrangians are pertinent,

depending on how the electroweak (EW) symmetry breaking is assumed to be realized:

linearly for elementary Higgs particles or non-linearly for “dynamical” -composite- ones.

It is important to find signals which discriminate among those two categories and this will

be one of the main focuses of this paper.

In elementary Higgs scenarios, the effective Lagrangian provides a basis for all possible

Lorentz and SU(3)c×SU(2)L×U(1)Y gauge invariant operators built out of SM fields. The

latter set includes a Higgs particle belonging to an SU(2)L doublet, and the operators are

weighted by inverse powers of the unknown high-energy scale Λ characteristic of NP: the

leading corrections to the SM Lagrangian have then canonical mass dimension (d) six [5, 6].

Many studies of the effective Lagrangian for the linear expansion have been carried out

over the years, including its effects on Higgs production and decay [7, 8], with a revival of

activity [9, 10] after the Higgs discovery [11, 12] (see also refs. [13–40] for studies of Higgs

couplings in alternative and related frameworks). Supersymmetric models are a typical

example of the possible underlying physics.

In dynamical Higgs scenarios, the Higgs particle is instead a composite field which

happens to be a pseudo-goldstone boson (GB) of a global symmetry exact at scales Λs,

corresponding to the masses of the lightest strong resonances. The Higgs mass is protected

by the global symmetry, thus avoiding the electroweak hierarchy problem. Explicit real-

izations include the revived and now popular models usually dubbed “composite Higgs”

scenarios [41–50], for various strong groups and symmetry breaking patterns.1 To the

extent that the light Higgs particle has a goldstone boson parenthood, the effective La-

grangian is non-linear [53] or “chiral”: a derivative expansion as befits goldstone boson

dynamics. The explicit breaking of the strong group -necessary to allow a non-zero Higgs

mass- introduces chiral-symmetry breaking terms. In this scenario, the characteristic scale

f of the Goldstone bosons arising from the spontaneous breaking of the global symmetry

at the scale Λs is different2 from both the EW scale v defined by the EW gauge boson

mass, e.g. the W mass mW = gv/2, and the EW symmetry breaking (EWSB) scale 〈h〉,
and respects Λs < 4πf . A model-dependent function g links the three scales, v = g(f, 〈h〉),
and a parameter measuring the degree of non-linearity of the Higgs dynamics is usually

introduced:

ξ ≡ (v/f)2 . (1.1)

The corresponding effective low-energy chiral Lagrangian is entirely written in terms

of the SM fermions and gauge bosons and of the physical Higgs h. The longitudinal

degrees of freedom of the EW gauge bosons can be effectively described at low energies by

1Also “little Higgs” [51] (see ref. [52] for a review) models and some higher-dimensional scenarios can

be cast in the category of constructions in which the Higgs is a goldstone boson.
2In the historical and simplest formulations of “technicolor” [54–56], the Higgs particle was completely

removed from the low-energy spectrum, which only retained the three SM would-be-Goldstone bosons with

a characteristic scale f = v.
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a dimensionless unitary matrix transforming as a bi-doublet of the global symmetry:

U(x) = eiσaπ
a(x)/v , U(x)→ LU(x)R† , (1.2)

where here the scale associated with the eaten GBs is v, and not f , in order to provide

canonically normalized kinetic terms, and L, R denotes SU(2)L,R global transformations,

respectively. Because of EWSB, the SU(2)L,R symmetries are broken down to the diagonal

SU(2)C , which in turn is explicitly broken by the gauged U(1)Y and by the heterogeneity

of the fermion masses. On the other hand, while insertions of the Higgs particle are

weighted down as h/f , as explained above, its couplings are now (model-dependent) general

functions. In all generality, the SU(2)L structure is absent in them and, as often pointed out

(e.g. refs. [57, 58]), the resulting effective Lagrangian can describe many setups including

that for a light SM singlet isoscalar.

To our knowledge, the first attempts to formulate a non-linear effective Lagrangian in

the presence of a “non standard/singlet light Higgs boson” go back to the 90’s [59, 60], and

later works [57, 61]. More recently, ref. [62] introduced a relevant set of operators, while

ref. [63] derived a complete effective Lagrangian basis for pure gauge and gauge-h operators

up to four derivatives. Later on, ref. [64] added the pure Higgs operator in ref. [65] as well

as fermionic couplings, proposing a complete basis for all SM fields up to four derivatives,

and trading some of the operators in ref. [63] by fermionic ones.3

The effective linear and chiral Lagrangians with a light Higgs particle h are intrinsically

different, in particular from the point of view of the transformation properties under the

SU(2)L symmetry. There is not a one-to-one correspondence of the leading corrections of

both expansions, and one expansion is not the limit of the other unless specific constraints

are imposed by hand -as illustrated below- or follow from particular dynamics at high

energies [68]. In the linear expansion, the physical Higgs h participates in the scalar

SU(2)L doublet Φ; having canonical mass dimension one, this field appears weighted by

powers of the cut-off Λ in any non-renormalizable operator and, moreover, its presence in

the Lagrangian must necessarily respect a pattern in powers of (v + h). In the non-linear

Lagrangian instead, the behaviour of the h particle does not abide any more to that of an

SU(2)L doublet but h appears as a SM singlet. Less symmetry constraints means more

possible invariant operators [69–71] at a given order, and in summary:

- In the non-linear realization, the chiral-symmetry breaking interactions of h are now

generic/arbitrary functions F(h).

- Furthermore, a relative reshuffling of the order at which couplings appear in each

expansion takes place [63, 72, 73]. As a consequence, a higher number of indepen-

dent (uncorrelated) couplings are present in the leading corrections for a non-linear

Lagrangian.

3The inferred criticisms in ref. [64] to the results in ref. [63] about missing and redundant operators are

incorrect: ref. [63] concentrated by definition in pure gauge and gauge-h couplings and those criticized as

“missing” are not in this category; a similar comment applies to the redundancy issue, explained by the

choice mentioned above of trading some gauge operators by fermionic ones in ref. [64]. Finally, the ξ weights

and the truncations defined for the first time in ref. [63] lead to rules for operator weights consistent with

those defined long ago in the Georgi-Manohar counting [66], and more recently in ref. [67].
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Both effects increase the relative freedom of the purely phenomenological Lorentz and

U(1)em couplings required at a given order of the expansion, with respect to the linear

analysis. Decorrelations induced by the first point have been recently stressed in ref. [74]

(analysing form factors for Higgs decays), while those resulting from the second point above

lead to further discriminating signals and should be taken into account as well. Both types

of effects will be explored below.

In what respects the analysis of present LHC and electroweak data, a first step in the

direction of using a non-linear realization was the substitution of the functional dependence

on (v + h) for a doublet Higgs in the linear expansion by a generic function F(h) for a

generic SM scalar singlet h, mentioned in the first point above. This has already led to

a rich phenomenology [26, 62, 74, 75]. Nevertheless, the scope of the decorrelations that

a generic F(h) induces between the pure gauge and the gauge-h part of a given operator

is limited: whenever data set a strong constraint on the pure gauge part of the coupling,

that is on the global operator coefficient, this constraint also affects the gauge-h part as it

is also proportional to the global coefficient; only in appealing to strong and, in general,

unnatural fine-tunings of the constants inside F(h) could that constraint be overcome.

As for the second consequence mentioned above, the point is that if higher orders in

both expansions are considered, all possible Lorentz and U(1)em couplings would appear in

both towers (as it is easily seen in the unitary gauge), but not necessarily at the same leading

or sub-leading order. One technical key to understand this difference is the adimensionality

of the field U(x). The induced towering of the leading low-energy operators is different

for the linear and chiral regimes, a fact illustrated recently for the pure gauge and gauge-h

effective non-linear Lagrangian [63, 72, 73]. More recently, and conversely, an example was

pointed out [64] of a d = 6 operator of the linear expansion whose equivalent coupling does

not appear among the leading derivative corrections in the non-linear expansion.

It will be shown below that, due to that reshuffling of the order at which certain leading

corrections appear, correlations that are expected as leading corrections in one case may

not hold in the other, unless specific constraints are imposed by hand or follow from high

energy dynamics. Moreover, interactions that are strongly suppressed (subleading) in one

regime may be leading order in the other.

In this paper we will first consider the basis of CP-even bosonic operators for the

general non-linear effective Lagrangian and analyse in detail its complete and independent

set of pure gauge and gauge-Higgs operators, implementing the tree-level renormalization

procedure and deriving the corresponding Feynman rules. The similarities and differences

with the couplings obtained in the linear regime will be carefully determined, considering in

particular the Hagiwara-Ishihara-Szalapski-Zeppenfeld (HISZ) basis [76, 77]. Nevertheless,

the physical results are checked to be independent of the specific linear basis used, as they

should be. The comparison of the effects in both realizations will be performed in the

context of complete bases of gauge and/or Higgs boson operators: all possible independent

(and thus non-redundant) such operators will be contemplated for each expansion, and

compared. For each non-linear operator we will identify linear ones which lead to the same

gauge couplings, and it will be shown that up to d = 12 linear operators would be required

to cover all the non-linear operators with at most four derivatives. We will then identify
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some of the most promising signals to discriminate experimentally among both expansions

in hypothetical departures from the size and Lorentz structure of couplings predicted by

the SM. This task is facilitated by the partial use of results obtained earlier on the physics

impact of the linear regime on LHC physics from d = 6 operators in refs. [9, 10, 78], and

from previous analysis of 4-point phenomenological couplings carried out in refs. [79–83].

In this paper we concentrate on the tree-level effects of operators, as a necessary first step

before loop effects are considered [84].

The structure of the paper can be easily inferred from the table of Contents.

2 The effective Lagrangian

We describe below the effective Lagrangian for a light dynamical Higgs [63] (see also

ref. [64]), restricted to the bosonic operators, except for the Yukawa-like interactions, up to

operators with four derivatives.4 Furthermore, only CP-even operators will be taken into

account, under the assumption that h is a CP-even scalar.

The most up-to-date analysis to the Higgs results have established that the couplings

of h to the gauge bosons and the absolute value of the couplings to fermions are compatible

with the SM ones. On the contrary, the sign of the couplings between h and fermions is

still to be measured, even if a slight preference for a positive value is indicated in some

two parameter fits (see for example [16, 17, 26]) which take into account one-loop induced

EW corrections. It is then justified to write the effective Lagrangian as a term L0, which

is in fact the SM Lagrangian except for the mentioned sign (would the latter be confirmed

positive, L0 should be exactly identified with the SM Lagrangian L0 = LSM ), and to

consider as corrections the possible departures from it due to the unknown high-energy

strong dynamics:

Lchiral = L0 + ∆L . (2.1)

This description is data-driven and, while being a consistent chiral expansion up to four

derivatives, the particular division in eq. (2.1) does not match that in number of deriva-

tives, usually adopted by chiral Lagrangian practitioners. For instance, the usual custodial

breaking term Tr(TVµ)Tr(TVµ) is a two derivative operator and is often listed among

the leading order set in the chiral expansion; however, it is not present in the SM at tree

level and thus here it belongs to ∆L by definition. Moreover, data strongly constrain its

coefficient so that it can be always considered [58] a subleading operator.

The first term in Lchiral reads then

L0 =
1

2
(∂µh)(∂µh)− 1

4
W a
µνW

aµν − 1

4
BµνB

µν − 1

4
GaµνG

aµν − V (h)

− (v + h)2

4
Tr[VµV

µ] + iQ̄ /DQ+ iL̄ /DL

− v + sY h√
2

(
Q̄LUYQQR + h.c.

)
− v + sY h√

2

(
L̄LUYLLR + h.c.

)
,

(2.2)

4As usual, derivative is understood in the sense of covariant derivative. That is, a gauge field and a

momentum have both chiral dimension one and their inclusion in non-renormalizable operators is weighted

down by the same high-scale Λs.
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where Vµ ≡ (DµU) U† (T ≡ Uσ3U
†) is the vector (scalar) chiral field transforming in the

adjoint of SU(2)L. The covariant derivative reads

DµU(x) ≡ ∂µU(x) + igWµ(x)U(x)− ig′

2
Bµ(x)U(x)σ3 , (2.3)

with Wµ ≡W a
µ (x)σa/2 and Bµ denoting the SU(2)L and U(1)Y gauge bosons, respectively.

In eq. (2.2), the first line describes the h and gauge boson kinetic terms, and the effective

scalar potential V (h), accounting for the breaking of the electroweak symmetry. The

second line describes the W and Z masses and their interactions with h, as well as the

kinetic terms for GBs and fermions. Finally, the third line corresponds to the Yukawa-like

interactions written in the fermionic mass eigenstate basis, where sY ≡ ± encodes the

experimental uncertainty on the sign in the h-fermion couplings. A compact notation for

the right-handed fields has been adopted, gathering them into doublets5 QR and LR. YQ

and YL are two 6× 6 block-diagonal matrices containing the usual Yukawa couplings:

YQ ≡ diag (YU , YD) , YL ≡ diag (Yν , YL) . (2.4)

∆L in eq. (2.1) includes all bosonic (that is, pure gauge and gauge-h operators plus

pure Higgs ones) and Yukawa-like operators that describe deviations from the SM picture

due to the strong interacting physics present at scales higher than the EW one, in an

expansion up to four derivatives [63]:

∆L =

ξ [cBPB(h) + cWPW (h) + cGPG(h) + cCPC(h) + cTPT (h) + cHPH(h) + c�HP�H(h)]

+ ξ
10∑
i=1

ciPi(h) + ξ2
25∑
i=11

ciPi(h) + ξ4c26P26(h) + Σiξ
niciHHP iHH(h) (2.5)

where ci are model-dependent constant coefficients, and the last term account for all possi-

ble pure Higgs operators weighted by ξni with ni ≥ 2. The set of pure-gauge and gauge-h

operators are defined by [63]:6

5The Cabibbo-Kobayashi-Maskawa mixing is understood to be encoded in the definition of QL.
6The set of pure gauge and gauge-h operators exactly matches that in ref. [63]; nevertheless, the labelling

of some operators here and their ξ-weights are corrected with respect to those in ref. [63], see later.
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Weighted by ξ:

PC(h) = −v
2

4
Tr(VµVµ)FC(h) P4(h) = ig′BµνTr(TVµ)∂νF4(h)

PT (h) =
v2

4
Tr(TVµ)Tr(TVµ)FT (h) P5(h) = igTr(WµνV

µ)∂νF5(h)

PB(h) = −g
′2

4
BµνB

µνFB(h) P6(h) = (Tr(VµV
µ))2F6(h)

PW (h) = −g
2

4
W a
µνW

aµνFW (h) P7(h) = Tr(VµV
µ)∂ν∂

νF7(h)

PG(h) = −g
2
s

4
GaµνG

aµνFG(h) P8(h) = Tr(VµVν)∂µF8(h)∂νF ′8(h)

P1(h) = gg′BµνTr(TWµν)F1(h) P9(h) = Tr((DµVµ)2)F9(h)

P2(h) = ig′BµνTr(T[Vµ,Vν ])F2(h) P10(h) = Tr(VνDµVµ)∂νF10(h)

P3(h) = igTr(Wµν [Vµ,Vν ])F3(h)

(2.6)

Weighted by ξ2:

P11(h) = (Tr(VµVν))2F11(h) P19(h) = Tr(TDµVµ)Tr(TVν)∂νF19(h)

P12(h) = g2(Tr(TWµν))2F12(h) P20(h) = Tr(VµVµ)∂νF20(h)∂νF ′20(h)

P13(h) = igTr(TWµν)Tr(T[Vµ,Vν ])F13(h) P21(h) = (Tr(TVµ))2∂νF21(h)∂νF ′21(h)

P14(h) = gεµνρλTr(TVµ)Tr(VνWρλ)F14(h) P22(h) = Tr(TVµ)Tr(TVν)∂µF22(h)∂νF ′22(h)

P15(h) = Tr(TDµVµ)Tr(TDνVν)F15(h) P23(h) = Tr(VµVµ)(Tr(TVν))2F23(h)

P16(h) = Tr([T,Vν ]DµVµ)Tr(TVν)F16(h) P24(h) = Tr(VµVν)Tr(TVµ)Tr(TVν)F24(h)

P17(h) = igTr(TWµν)Tr(TVµ)∂νF17(h) P25(h) = (Tr(TVµ))2∂ν∂
νF25(h)

P18(h) = Tr(T[Vµ,Vν ])Tr(TVµ)∂νF18(h)
(2.7)

Weighted by ξ4:

P26(h) = (Tr(TVµ)Tr(TVν))2F26(h) . (2.8)

In eq. (2.7), Dµ denotes the covariant derivative on a field transforming in the adjoint

representation of SU(2)L, i.e.

DµVν ≡ ∂µVν + ig [Wµ,Vν ] . (2.9)

Finally, the pure Higgs operators are:

Weighted by ξ: this set includes two operators, one with two derivatives and one with

four,

PH(h) =
1

2
(∂µh)(∂µh)FH(h) , P�H =

1

v2
(∂µ∂

µh)2F�H(h) . (2.10)

In spite of not containing gauge interactions, they will be considered here as they affect

the renormalization of SM parameters, and the propagator of the h field, respectively.
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Weighted by ξ≥2: this class consists of all possible pure Higgs operators with four deriva-

tives weighted by ξ≥2, P iHH(h). We refrain from listing them here, as pure-h operators

are beyond the scope of this work and therefore they will not be taken into account in the

phenomenological sections below. An example of ξ2-weighted operator would be [65, 85]

PDH(h) =
1

v4
((∂µh)(∂µh))2FDH(h) . (2.11)

In another realm, note that PC(h), PT (h) and PH(h) are two-derivative operators

and would be considered among the leading terms in any formal analysis of the non-linear

expansion (as explained after eq. (2.1)), a fact of no consequence below.

The ξ weights within ∆L do not reflect an expansion in ξ, but a reparametrisation

that facilitates the tracking of the lowest dimension at which a “sibling” of a given operator

appears in the linear expansion. To guarantee the procedure, such an analysis requires to

compare with a specific linear basis; complete linear bases are only available up to d = 6

and here we use the completion of the original HISZ basis [6, 76], see section 3.1.

A sibling of a chiral operator Pi(h) is defined as the operator of the linear expansion

whose pure gauge interactions coincide with those described by Pi(h). The canonical di-

mension d of the sibling, that is the power of ξ, is thus an indicator of at which order in the

linear expansion it is necessary and sufficient to go to account for those gauge interactions:

operators weighted by ξn require us to consider siblings of canonical dimension d = 4 + 2n.

It may happen that an operator in eqs. (2.6)–(2.10) corresponds to a combination of linear

operators with different canonical dimensions: the power of ξ refers then to the lowest di-

mension of such operators that leads to the same phenomenological gauge couplings. The

lowest dimensional siblings of the operators in eqs. (2.6) and (2.10) have d = 6; those in

eqs. (2.7) have d = 8; that of eq. (2.8) has d = 12. ξ is not a physical quantity per se in

the framework of the effective Lagrangian. If preferred by the reader, the ξ weights can

be reabsorbed in a redefinition of the coefficients ci and be altogether forgotten; neverthe-

less, they allow a fast connection with the analyses performed in the linear expansion, as

illustrated later on.

In the Lagrangian above, Eq. (2.5), we have chosen a definition of the operator coeffi-

cients which does not make explicit the weights expected from Naive Dimensional Analysis

(NDA) [66, 67, 86]. While the NDA rules are known not to apply to the gauge and scalar

kinetic and mass terms, for the higher-order corrections they would imply suppressions

by factors of the goldstone boson scale f versus the high energy scale Λs. In particu-

lar, the coefficients of all operators in eq. (2.6) except PC(h), as well as all operators in

eqs. (2.7), (2.8) and (2.10), would be suppressed by the factor f2/Λ2
s = 1/(16π2). The

coefficients can be easily redefined by the reader if wished.

The F(h) functions encode the chiral interactions of the light h, through the generic

dependence on (〈h〉 + h), and are model dependent. Each function can be defined by

F(h) ≡ g0(h, v) + ξg1(h, v) + ξ2g2(h, v) + . . ., where gi(h, v) are model-dependent functions

of h and of v, once 〈h〉 is expressed in terms of ξ and v. Here we will assume that the

F(h) functions are completely general polynomials of 〈h〉 and h (not including derivatives

of h). Notice that when using the equations of motion (EOM) and integration by parts

– 8 –
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to relate operators, F(h) would be assumed to be redefined when convenient, much as one

customarily redefines the constant operator coefficients.

The insertions of the h field, explicit or through generic functions, deserve a separate

comment: given their goldstonic origin, they are expected to be suppressed by the goldstone

boson scale as h/f , as it has been already specified above. This is encoded in the present

formalism by the combination of the Fi(h) functions as defined in the text and the pertinent

ξ-weights which have been explicitly extracted from them, as they constitute a useful tool

to establish the relation with the linear expansions. Consider an initial generic dependence

on the h field of the form (h+ 〈h〉)/f =
√
ξ(h+ 〈h〉)/v: for instance in the linear regime, in

which 〈h〉 ∼ v, the Fi(h) functions are defined in the text as leading to powers of (1+h/v),

because the functional ξ-dependence has been made explicit in the Lagrangian.

Connection to fermionic operators. Several operators in the list in eqs. (2.6)–(2.8)

are independent only in the presence of massive fermions: these are P9(h), P10(h), P15(h),

P16(h), P19(h), one out of P6(h), P7(h) and P20(h), and one out of P21(h), P23(h) and

P25(h). Indeed, P9(h), P10(h), P15(h), P16(h), and P19(h) contain the contraction Dµ Vµ

that is connected with the Yukawa couplings [63], through the manipulation of the gauge

field EOM and the Dirac equations (see appendix A for details). When fermion masses

are neglected, these five operators can be written in terms of the other operators in the

basis (see eq. (A.16)). Furthermore, using the light h EOM (see eq. (A.3)), operator

P7(h) (P25(h)) can be reduced to a combination of P6(h) and P20(h) (P21(h) and P23(h)),

plus a term that can be absorbed in the redefinition of the h-gauge boson couplings, plus

a term containing the Yukawa interactions (see appendix A for details). In summary,

all those operators must be included to have a complete and independent bosonic basis;

nevertheless, in the numerical analysis in section 4.2 their effect will be disregarded as the

impact of fermion masses on data analysis will be negligible.

Other operators in the basis in eqs. (2.6)–(2.10) can be traded by fermionic ones

independently of the size of fermion masses, applying the EOM for DµWµν and ∂µB
µν , see

eqs. (A.1), (A.2) and (A.11) in appendix A. The complete list of fermionic operators that

are related to the pure gauge and gauge-h basis in eqs. (2.6)–(2.10) can also be found there.7

This trading procedure can turn out to be very useful [10, 35, 37, 38, 87] when analysing

certain experimental data if deviations from the SM values for the h-fermion couplings

were found. A basis including all possible fermionic couplings could be more useful in such

a hypothetical situation. The bosonic basis defined above is instead “blind” [88] to some

deviations in fermionic couplings. This should not come as a surprise: the choice of basis

should be optimized with respect to the experimental data under analysis and the presence

of blind directions is a common feature of any basis. In this work we are focused in exploring

directly the experimental consequences of anomalous gauge and gauge-h couplings and

eqs. (2.6)–(2.10) are the appropriate analysis tool.

7For completeness, the EOM of the gauge bosons, h and U(h), and the Dirac equations as well as the

full list of fermionic operators that are related to the bosonic ones in eqs. (2.6)–(2.10) are presented in

appendix A. In this paper, we will only rely on bosonic observables and therefore we will not consider any

fermionic operators other than those mentioned.
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Custodial symmetry. In the list in eqs. (2.6)–(2.10), the operators P�H(h), PT (h),

P1(h), P2(h), P4(h), P9(h), P10(h) and P12−26(h) are custodial symmetry breaking, as

either they: i) are related to fermion masses; ii) are related to the hypercharge through

g′Bµν ; iii) they contain the scalar chiral operator T but no Bµν . Among these, only PT (h)

and P1(h) are strongly constrained from electroweak precision test, while the phenomeno-

logical impact of the remaining operators has never been studied and therefore they could

lead to interesting effects.

If instead by “custodial breaking” operators one refers only to those in iii), a complete

set of bosonic custodial preserving operators is given by the following eighteen operators:

PH(h), P�H(h), PC(h), PB(h), PW (h), PG(h), P1−11(h), P20(h). (2.12)

Furthermore, if fermion masses are neglected, this ensemble is further reduced to a set of

fourteen independent operators, given by

PH(h), PC(h), PB(h), PW (h), PG(h), P1−5(h), P8(h), P11(h), (2.13)

plus any two among the following three operators:

P6(h), P7(h), P20(h). (2.14)

Under the same assumptions (no beyond SM sources of custodial breaking and massless

fermions), a subset of only twelve operators has been previously proposed in ref. [62], as

this reference in addition restricted to operators that lead to cubic and quartic vertices of

GBs and gauge bosons and including one or two Higgs bosons.

The Lagrangian in eq. (2.1) is very general and can be used to describe an extended

class of Higgs models, from the SM scenario with a linear Higgs sector (for 〈h〉 = v, ξ = 0

and sY = 1), to the technicolor-like ansatz (for f ∼ v and omitting all terms in h) and

intermediate situations with a light scalar h from composite/holographic Higgs models [41–

49, 56] (in general for f 6= v) up to dilaton-like scalar frameworks [85, 89–94] (for f ∼ v),

where the dilaton participates in the electroweak symmetry breaking.

3 Comparison with the linear regime

The chiral and linear approaches are essentially different from each other, as explained in

the introduction. The reshuffling with respect to the linear case of the order at which the

leading operators appear plus the generic dependence on h imply that correlations among

observables present in one scenario may not hold in the other and, moreover, interactions

that are strongly suppressed in one case may be leading corrections in the other. As the

symmetry respected by the non-linear Lagrangian is smaller, more freedom is generically

expected for the latter. In this section, for the sake of comparison we will first present the

effective Lagrangian in the linear regime, restricting to the HISZ basis [76, 77], and discuss

then the coincidences and differences expected in observable predictions. The relation to

another basis [87] can be found in appendix B.
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3.1 The effective Lagrangian in the linear regime

Following the description pattern in eq. (2.1), the effective Lagrangian in the linear regime

can be written accordingly as

Llinear = LSM + ∆Llinear , (3.1)

where the relation with the non-linear Lagrangian in eq. (2.2) is given by LSM = L0|sY =1,

and ∆Llinear contains operators with canonical dimension d > 4, weighted down by suitable

powers of the ultraviolet cut-off scale Λ. Restricting to CP -even and baryon and lepton

number preserving operators, the leading d = 6 corrections

∆L d=6
linear =

∑
i

fi
Λ2
Oi , (3.2)

may be parametrized via a complete basis of operators [5, 6]. Only a small subset of those

modify the Higgs couplings to gauge bosons. Consider the HISZ basis [76, 77]:

OGG = Φ†ΦGaµνG
aµν , OWW = Φ†ŴµνŴ

µνΦ ,

OBB = Φ†B̂µνB̂
µνΦ , OBW = Φ†B̂µνŴ

µνΦ ,

OW = (DµΦ)†Ŵµν(DνΦ) , OB = (DµΦ)†B̂µν(DνΦ) , (3.3)

OΦ,1 = (DµΦ)†Φ Φ† (DµΦ) , OΦ,2 =
1

2
∂µ
(

Φ†Φ
)
∂µ

(
Φ†Φ

)
,

OΦ,4 = (DµΦ)† (DµΦ)
(

Φ†Φ
)
,

where DµΦ =
(
∂µ + i

2g
′Bµ + i

2gσiW
i
µ

)
Φ and B̂µν ≡ i

2g
′Bµν and Ŵµν ≡ i

2gσiW
i
µν . An

additional operator is commonly added in phenomenological analysis,

OΦ,3 =
1

3

(
Φ†Φ

)3
, (3.4)

which is a pure Higgs operator. An equivalent basis of ten operators in the linear expansion

is often used nowadays instead of the previous set of ten linear operators: the so-called

SILH [87] Lagrangian, in which four of the operators above are traded by combinations of

them and/or by a fermionic one via EOM (the exact relation with the SILH basis can be

found in appendix B).

The pure Higgs interactions described by the ξ-weighted operator P�H of the chiral

expansion, eq. (2.10), are contained in the linear operator,

O�Φ = (DµD
µΦ)† (DνD

νΦ) . (3.5)

Let us now explore the relation between the linear and non-linear analyses. Beyond

the different h-dependence of the operators, that is (in the unitary gauge):

Φ =
1√
2

(
0

v + h(x)

)
vs. F(h) , (3.6)
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it is interesting to explore the relation among the linear operators in eqs. (3.3) and those

in the chiral expansion. A striking distinct feature when comparing both basis is the

different number of independent couplings they span. This is best illustrated for instance

truncating the non-linear expansion at order ξ -which may be specially relevant for small

ξ- and comparing the result with the d = 6 linear basis that contributes to gauge-Higgs

couplings: while the latter basis exhibits ten independent couplings, the former depends on

sixteen. A more precise illustration follows when taking momentarily Fi(h) = (1 + h/v)2,

with n = 2 in general, in all Pi(h) under discussion, which would lead to:

OBB =
v2

2
PB(h), OWW =

v2

2
PW (h),

OGG = −2v2

g2
s

PG(h), OBW =
v2

8
P1(h),

OB =
v2

16
P2(h) +

v2

8
P4(h), OW =

v2

8
P3(h)− v2

4
P5(h),

OΦ,1 =
v2

2
PH(h)− v2

4
F(h)PT (h), OΦ,2 = v2PH(h),

OΦ,4 =
v2

2
PH(h) +

v2

2
F(h)PC(h),

(3.7)

O�Φ =
v2

2
P�H(h) +

v2

8
P6(h) +

v2

4
P7(h)− v2P8(h)− v2

4
P9(h)− v2

2
P10(h).

These relations show that five chiral operators, PB(h), PW (h), PG(h), P1(h) and PH(h)

are then in a one-to-one correspondence with the linear operators OBB, OWW , OGG, OBW
and OΦ,2, respectively. Also the operator PT (h) (PC(h)) corresponds to a combination of

the linear operators OΦ,1 and OΦ,2 (OΦ,4 and OΦ,2). In contrast, it follows from eq. (3.7)

above that:

- Only a specific combination of the non-linear operators P2(h) and P4(h) corresponds

to the linear operator OB.

- Similarly, a specific combination of the non-linear operators P3(h) and P5(h) corre-

sponds to the linear operator OW .

- Only a specific combination of the non-linear operators P�H(h), P6(h), P7(h), P8(h),

P9(h) and P10(h) corresponds to the linear operator O�Φ.

It is necessary to go to the next order in the linear basis, d = 8, to identify the operators

which break these correlations (see eq. (C.2)). It can be checked that, for example for the

first two correlations, the linear d = 8 operators(
(DµΦ)†Φ

)
B̂µν

(
Φ†DνΦ

)
and

(
(DµΦ)†Φ

)
Ŵµν

(
Φ†DνΦ

)
(3.8)

correspond separately to P4(h) and P5(h), respectively.

A comment is pertinent when considering the ξ truncation. In the ξ → 0 limit, in which

F(h)→ (1 + h/v)2, if the underlying theory is expected to account for EWSB, the ensemble

of the non-linear Lagrangian should converge to a linear-like pattern. Nevertheless, the
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size of ξ is not known in a model-independent way; starting an analysis by formulating

the problem (only) in the linear expansion is somehow assuming an answer from the start:

that ξ is necessarily small in any possible BSM construction. Furthermore, the non-linear

Lagrangian accounts for more exotic singlet scalars, and that convergence is not granted

in general.

The maximal set of CP-even independent operators involving gauge and/or the Higgs

boson in any d = 6 linear basis is made out of 16 operators: the ten [76, 77] in eqs. (3.3)

and (3.4), plus the operator [6] O�Φ defined in eq. (3.5), and another five which only modify

the gauge boson couplings and do not involve the Higgs field8 [76, 77]:

OWWW = iεijkŴ
i ν
µ Ŵ j ρ

ν Ŵ k µ
ρ , OGGG = ifabcG

a ν
µ Gb ρν G

c µ
ρ ,

ODW =
(
Dµ Ŵµν

)i (
DρŴ ρν

)i
, ODB =

(
∂µB̂µν

)(
∂ρB̂

ρν
)
,

ODG = (DµGµν)a (DρGρν)a .

(3.9)

The Lorentz structures contained in these five operators are not present in the non-linear

Lagrangian expanded up to four derivatives: they would appear only at higher order in

that expansion, i.e. six derivatives. They are not the siblings of any of the chiral operators

discussed in this work, eqs. (2.6)–(2.10).

The rest of this paper will focus on how the present and future LHC gauge and gauge-

h data, as well as other data, may generically shed light on the (non-)linearity of the

underlying physics. In particular exploiting the decorrelations implied by the discussion

above as well as via new anomalous discriminating signals.

Disregarding fine tunings, that is, assuming in general all dimensionless operator co-

efficients of O(1), the pattern of dominant signals expected from each expansion varies

because the nature of some leading corrections is different, or because the expected rela-

tion between some couplings varies. In the next subsections we analyze first how some

correlations among couplings expected in the linear regime are broken in the non-linear

one. Next, it is pointed out that some couplings expected if the EWSB is linearly realized

are instead expected to appear only as higher order corrections in the non-linear case.

Conversely and finally, attention is paid to new anomalous couplings expected as leading

corrections in the non-linear regime which appear only at d ≥ 8 of the linear expansion.

3.2 Decorrelation of signals with respect to the linear analysis

The parameter ξ is a free parameter in the effective approach. Nevertheless, in concrete

composite Higgs models electroweak corrections imply ξ . 0.2−0.4 [95] (more constraining

bounds ξ . 0.1−0.2 have been advocated in older analyses [29, 96, 97]), and it is therefore

interesting for the sake of comparison to consider the truncation of ∆L which keeps only

the terms weighted by ξ and disregard first those weighted by higher ξ powers. We will thus

8The Operators ODW , ODB and ODG are usually traded by OWWW and OGGG plus fermionic operators.

As in this paper we focus on bosonic observables, such translation is not pertinent. Taken by themselves,

the ensembles discussed constitute a non-redundant and complete set of gauge and/or Higgs operators. In

ODG, Dµ denotes the covariant derivative acting on a field transforming in the adjoint of SU(3)C .
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analyze first only those operators in eqs. (2.6) and (2.10). We will refer to this truncation

as ∆L ξ and define L ξ
chiral ≡ L0 + ∆L ξ.

All operators in ∆L ξ have by definition lowest dimensional linear siblings of d = 6.

We will thus compare first L ξ
chiral with the d = 6 linear expansion [5, 6, 87]. For low enough

values of ξ, that is when the new physics scale Λs � v, L ξ
chiral is expected to collapse into

the d = 6 linear Lagrangian if it should account correctly for EW symmetry breaking via

an SU(2)L doublet scalar, but the non-linear Lagrangian encodes more general scenarios

(for instance that for a SM singlet) as well.

The comparison of the effects in the non-linear versus the linear expansion is illuminat-

ing when done in the context of the maximal set of independent (and thus non-redundant)

operators on the gauge-boson/Higgs sector for each expansion: comparing complete bases

of those characteristics. The number of independent bosonic operators that induce leading

deviations in gauge-h couplings turns out to be then different for both expansions: ten

d = 6 operators in the linear expansion, see eq. (3.3) and eq. (3.5), for sixteen ξ-weighted

operators9 in the chiral one, see eq. (2.6) and (2.10). For illustration, further details are

given here on one example pointed out in section 3.1: P2(h) and P4(h) versus the d = 6

operator OB. From eq. (3.7) it followed that only the combinations P2(h) + 2P4(h) have a

d = 6 linear equivalent (with Fi(h) substituted by (1 +h/v)2). In the unitary gauge P2(h)

and P4(h) read:

P2(h) = 2ieg2AµνW
−µW+νF2(h)− 2

ie2g

cos θW
ZµνW

−µW+νF2(h) , (3.10)

P4(h) = − eg

cos θW
AµνZ

µ∂νF4(h) +
e2

cos2 θW
ZµνZ

µ∂νF4(h) , (3.11)

with their coefficients c2 and c4 taking arbitrary (model-dependent) values. In contrast,

their d = 6 sibling OB results in the combination:

OB =
ieg2

8
AµνW

−µW+ν(v + h)2 − ie2g

8 cos θW
ZµνW

−µW+ν(v + h)2

− eg

4 cos θW
AµνZ

µ∂νh(v + h) +
e2

4 cos2 θW
ZµνZ

µ∂νh(v + h) .

(3.12)

In consequence, the following interactions encoded in OB -and for the precise Lorentz

structures shown above- get decorrelated in a general non-linear analysis:

- γ −W −W from γ −Z − h, and Z −W −W from Z −Z − h; these are examples of

interactions involving different number of external h legs.

- γ −W −W − h from γ − Z − h, and Z −W −W − h from Z − Z − h, which are

interactions involving the same number of external h legs.

While such decorrelations are expected among the leading SM deviations in a generic non-

linear approach, they require us to consider d = 8 operators in scenarios with linearly real-

ized EW symmetry breaking. This statement is a physical effect, which means that it holds

9Note that the first operator in eq. (2.10) impacts on the gauge-h couplings via the renormalization of

the h field.
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irrespective of the linear basis used, for instance it also holds in the bases in refs. [97, 98].

The study of the correlations/decorrelations described represents an interesting method to

investigate the intimate nature of the light Higgs h.

The argument developed above focused on just one operator, for illustration. A par-

allel analysis on correlations/decorrelations also applies in other case, i.e. the interactions

described by P3(h) and P5(h) versus those in the d = 6 linear operator OW . Obviously,

in order to firmly establish the pattern of deviations expected, all possible operators at a

given order of an expansion should be considered together, and this will be done in the

phenomenological section 4 below.

3.3 Signals specific to the linear expansion

The d = 6 operators in eq. (3.9) have no equivalent among the dominant corrections of

the non-linear expansion, eqs. (2.6)–(2.10), all ξ weights considered. This fact results in an

interesting method to test the nature of the Higgs. Considering for example the operator

OWWW in eq. (3.9), the couplings

Aρ

W−ν

W+
µ

fWWW
3ieg2

4

[
gρµ ((p+ · p−)pAν − (pA · p−)p+ν)

+ gµν ((pA · p−)p+ρ − (pA · p+)p−ρ)

+ gρν ((pA · p+)p−µ − (p+ · p−)pAµ) + pAµp+νp−ρ − pAνp+ρp−µ

]
,

(3.13)

Zρ

W−ν

W+
µ

fWWW
3ig3 cos θW

4

[
gρµ ((p+ · p−)pZν − (pZ · p−)p+ν)

+ gµν ((pZ · p−)p+ρ − (pZ · p+)p−ρ)

+ gρν ((pZ · p+)p−µ − (p+ · p−)pZµ) + pZµp+νp−ρ − pZνp+ρp−µ

]
,

should be observable with a strength similar to that of other couplings described by d =

6 operators, if the EW breaking is linearly realized by the underlying physics. On the

contrary, for a subjacent non-linear dynamics their strength is expected to be suppressed

(i.e. be of higher order) [64].10 A similar discussion holds for the other operators in eq. (3.9).

3.4 New signals specific to the non-linear expansion

For large ξ, all chiral operators weighted by ξn with n ≥ 2, eqs. (2.7)–(2.10), are equally

relevant to the ξ-weighted ones in eq. (2.6), and therefore their siblings require operators

of dimension d ≥ 8. Of special interest is P14(h) which belongs to the former class, as some

of the couplings encoded in it are absent from the SM Lagrangian. This fact provides a

viable strategy to test the nature of the physical Higgs.

In appendix D, the Feynman rules for all couplings appearing in the non-linear La-

grangian for gauge and gauge-h operators can be found. A special column indicates directly

the non-standard structures and it is easy to identify among those entries the couplings

10This coupling is usually referred to in the literature as λV [4].
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weighted only by ξn with n ≥ 2. Here, we report explicitly only the example of the anoma-

lous Z −W −W and γ − Z −W −W vertices, assuming for simplicity that the F14(h)

function admits a polynomial expansion in h/v. The operator P14(h) contains the couplings

εµνρλ∂µW
+
ν W

−
ρ ZλF14(h) , εµνρλZµAνW

−
ρ W

+
λ F14(h) , (3.14)

which correspond to an anomalous Z −W −W triple vertex and to an anomalous γ−Z −
W −W quartic vertex, respectively. The corresponding Feynman diagrams and rules read

Zρ

W−ν

W+
µ

− ξ2 g3

cos θW
εµνρλ[p+λ − p−λ] ,

Aν

Zµ

W−ρ

W+
λ

− 2 ξ2 eg3

cos θW
εµνρλ .

(3.15)

These couplings are present neither in the SM nor in the d = 6 linear Lagrangian and are

anomalous couplings due to their Lorentz nature. A signal of these type of interactions

at colliders with a strength comparable with that expected for the couplings in the d = 6

linear Lagrangian would be a clear hint of a strong dynamics in the EWSB sector. More

details are given in the phenomenological sections below.

4 Phenomenology

Prior to developing the strategies suggested above to investigate the nature of the Higgs

particle, the renormalization procedure is illustrated next.

4.1 Renormalization procedure

Five electroweak parameters of the SM-like Lagrangian L0 are relevant in our analysis,

when neglecting fermion masses: gs, g, g′, v and the h self-coupling λ. The first four can

be optimally constrained by four observables that are extremely well determined nowadays,

while as a fifth one the Higgs mass mh can be used; in summary:

αs world average [99],

GF extracted from the muon decay rate [99],

αem extracted from Thomson scattering [99],

mZ extracted from the Z lineshape at LEP I [99],

mh now measured at LHC [11, 12].

(4.1)

This ensemble of observables defines the so-called Z-scheme: they will be kept as input pa-

rameters, and all predictions will be expressed as functions of them. Accordingly, whenever

a dependence on the parameters g, g′, v (and e) or the weak mixing angle θW may appear
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in the expressions below, it should be interpreted as corresponding to the combinations of

experimental inputs as follows:

e2 = 4παem , sin2 θW =
1

2

(
1−

√
1− 4παem√

2GFm2
Z

)
,

v2 =
1√

2GF
,

(
g =

e

sin θW
, g′ =

e

cos θW

)∣∣∣∣
θW , e as above

.

(4.2)

The abbreviations sθ (s2θ) and cθ (c2θ) will stand below for sin θW (sin 2θW ) and cos θW
(cos 2θW ), respectively. Furthermore, for concreteness, we assume a specific parametriza-

tion for the Fi(h) functions:

Fi(h) ≡ 1 + 2ãi
h

v
+ b̃i

h2

v2
+ . . . (4.3)

where the dots stand for higher powers of h/v that will not be considered in what follows;

to further simplify the notation ai and bi will indicate below the products ai ≡ ciãi and

bi ≡ cib̃i, respectively, where ci are the global operator coefficients.

Working in the unitary gauge to analyze the impact that the couplings in ∆L in

eq. (2.5) have on L0, it is straightforward to show that PB(h), PW (h), PG(h), PH(h),

P1(h) and P12(h) introduce corrections to the SM kinetic terms, and in consequence field

redefinitions are necessary to obtain canonical kinetic terms. Among these operators,

PB(h), PW (h) and PG(h) can be considered innocuous operators with respect to L0, as

the impact on the latter of cB, cW and cG can be totally eliminated from the Lagrangian by

ineffectual field and coupling constant redefinitions; they do have a physical impact though

on certain BSM couplings in ∆L involving external scalar fields.

With canonical kinetic terms, it is then easy to identify the contribution of ∆L to the

input parameters:11

δαem

αem
' 4e2 c1 ξ + 4e2 c12ξ

2 ,
δGF
GF

' 0 ,

δmZ

mZ
' −cT ξ − 2e2 c1 ξ + 2e2 cot2 θW c12 ξ

2 ,
δmh

mh
' 0 ,

(4.4)

keeping only terms linear in the coefficients ci. Expressing all other SM parameters in

Lchiral in terms of the four input parameters leads to the predictions to be described next.

W mass. The prediction for the W mass departs from the SM expectation by

∆m2
W

m2
W

=
4e2

c2θ
c1 ξ +

2c2
θ

c2θ
cT ξ −

4e2

s2
θ

c12 ξ
2

≡ e2

2c2θ
fBW

v2

Λ2
−

c2
θ

2c2θ
fΦ,1

v2

Λ2
,

(4.5)

where the second line shows for comparison the corresponding expression in the linear

expansion at order d = 6.

11The BSM corrections that enter into the definition of the input parameters will be generically denoted

by the sign “δ”, while the predicted measurable departures from SM expectations will be indicated below

by “∆”.
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S and T parameters. P1(h) and PT (h) generate tree-level contributions to the oblique

parameters S and T [100], which read

αem∆S = −8e2c1ξ and αem∆T = 2cT ξ . (4.6)

Triple gauge-boson couplings. The effective operators described in the non-linear La-

grangian, eqs. (2.6)–(2.8), give rise to triple gauge-boson couplings γW+W− and ZW+W−.

Following ref. [4], the CP-even sector of the Lagrangian that describes trilinear gauge boson

vertices (TGV) can be parametrized as:

LWWV =− igWWV

{
gV1

(
W+
µνW

−µV ν −W+
µ VνW

−µν
)

+ κVW
+
µ W

−
ν V

µν (4.7)

− igV5 εµνρσ
(
W+
µ ∂ρW

−
ν −W−ν ∂ρW+

µ

)
Vσ + gV6

(
∂µW

+µW−ν − ∂µW−µW+ν
)
Vν

}
,

where V ≡ {γ, Z} and gWWγ ≡ e = g sin θW , gWWZ = g cos θW (see eq. (4.2) for their

relation to observables). In this equation W±µν and Vµν stand exclusively for the kinetic part

of the gauge field strengths. In contrast with the usual parameterization proposed in ref. [4],

the coefficient λV (associated with a linear d = 6 operator) is omitted here as this coupling

does not receive contributions from the non-linear effective chiral Lagrangian expanded

up to four derivatives. Conversely, we have introduced the coefficients gV6 associated to

operators that contain the contraction DµVµ; its ∂µV
µ part vanishes only for on-shell

gauge bosons; in all generality DµVµ insertions could only be disregarded12 in the present

context when fermion masses are neglected, as explained in section 2 and appendix A.

Electromagnetic gauge invariance requires gγ1 = 1 and gγ5 = 0, and in consequence the

TGV CP-even sector described in eq. (4.7) depends in all generality on six dimensionless

couplings gZ1 , gZ5 , gγ,Z6 and κγ,Z . Their SM values are gZ1 = κγ = κZ = 1 and gZ5 = gγ6 =

gZ6 = 0. Table 1 shows the departures from those SM values due to the effective couplings

in eq. (2.5); it illustrates the ξ and ξ2-weighted chiral operator contributions. For the sake

of comparison, the corresponding expressions in terms of the coefficients of d = 6 operators

in the linear expansion are shown as well. A special case is that of the linear operator O�Φ,

whose physical interpretation is not straightforward [137–139] and will be analyzed in detail

in ref. [140]; the corresponding coefficient f�Φ does not appear in table 1 as contributing

to the measurable couplings, while nevertheless the symbol (∗) recalls the theoretical link

between some chiral operators and their sibling O�Φ. The analysis of table 1 leads as well

to relations between measurable quantities, which are collected later on in eq. (4.14) and

subsequent ones.

h couplings to SM gauge-boson pairs. The effective operators described in eqs. (2.6)–

(2.8) also give rise to interactions involving the Higgs and two gauge bosons, to which we

12See for example ref. [101] for a general discussion on possible “off-shell” vertices associated to d = 4

and d = 6 operators.
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Coeff. Chiral Linear

×e2/s2
θ ×ξ ×ξ2 ×v2/Λ2

∆κγ 1 −2c1+2c2+c3 −4c12+2c13
1
8 (fW + fB−2fBW )

∆gγ6 1 −c9 − (∗)

∆gZ1
1
c2θ

s22θ
4e2c2θ

cT +
2s2θ
c2θ
c1+c3 − 1

8fW +
s2θ

4c2θ
fBW− s22θ

16e2c2θ
fΦ,1

∆κZ 1
s2θ

e2c2θ
cT +

4s2θ
c2θ
c1− 2s2θ

c2θ
c2+c3 −4c12+2c13

1
8fW−

s2θ
8c2θ
fB+

s2θ
2c2θ

fBW− s2θ
4e2c2θ

fΦ,1

∆gZ5
1
c2θ

− c14 −

∆gZ6
1
c2θ

s2
θc9 −c16 (∗)

Table 1. Effective couplings parametrizing the VW+W− vertices defined in eq. (4.7). The coeffi-

cients in the second column are common to both the chiral and linear expansions. In the third and

fourth columns the specific contributions from the operators in the chiral Lagrangian are shown.

For comparison, the last column exhibits the corresponding contributions from the linear d = 6 op-

erators. The star (∗) in the last column indicates the link between the chiral operator P9(h) and its

linear sibling O�Φ, without implying a physical impact of the latter on the VW+W− observables,

as explained in the text and in ref. [140].

will refer as HVV couplings. The latter can be phenomenologically parametrized as

LHVV ≡ gHgg G
a
µνG

aµνh+ gHγγ AµνA
µνh+ g

(1)
HZγ AµνZ

µ∂νh+ g
(2)
HZγ AµνZ

µνh

+ g
(1)
HZZ ZµνZ

µ∂νh+ g
(2)
HZZ ZµνZ

µνh+ g
(3)
HZZ ZµZ

µh+ g
(4)
HZZ ZµZ

µ�h

+ g
(5)
HZZ ∂µZ

µZν∂
νh+ g

(6)
HZZ ∂µZ

µ∂νZ
νh (4.8)

+ g
(1)
HWW

(
W+
µνW

−µ∂νh+ h.c.
)

+ g
(2)
HWW W+

µνW
−µνh+ g

(3)
HWW W+

µ W
−µh

+ g
(4)
HWW W+

µ W
−µ�h+g

(5)
HWW

(
∂µW

+µW−ν ∂
νh+h.c.

)
+g

(6)
HWW ∂µW

+µ∂νW
−νh ,

where Vµν = ∂µVν − ∂νVµ with V = {A,Z,W,G}. Separating the contributions into SM

ones plus corrections,

g
(j)
i ' g

(j)SM
i + ∆g

(j)
i , (4.9)

it turns out that

g
(3)SM
HZZ =

m2
Z

v
, g

(3)SM
HWW =

2m2
Zc

2
θ

v
, (4.10)

while the tree-level SM value for all other couplings in eq. (4.8) vanishes (the SM loop-

induced value for gHgg, gHγγ and g
(2)
HZγ will be taken into account in our numerical analysis,

though); in these expressions, v is as defined in eq. (4.2). Table 2 shows the expressions

for the corrections ∆gHgg, ∆gHγγ , ∆g
(1,2)
HZγ , ∆g

(1,2,3,4,5,6)
HWW , and ∆g

(1,2,3,4,5,6)
HZZ induced at tree-

level by the effective non-linear couplings under discussion. In writing eq. (4.8) we have

introduced the coefficients ∆g
(4,5,6)
HZZ and ∆g

(4,5,6)
HWW : ∆g

(4)
HV V become redundant for on-shell

h; ∆g
(5,6)
HV V vanish for on-shell Wµ and Zµ or massless fermions. Notice also that the

leading chiral corrections include operators weighted by ξ powers up to ξ2. For the sake of
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Coeff. Chiral Linear

×e2/4v ×ξ ×ξ2 ×v2/Λ2

∆gHgg
g2s
e2

−2aG − −4fGG

∆gHγγ 1 −2(aB + aW ) + 8a1 8a12 −(fBB + fWW ) + fBW

∆g
(1)
HZγ

1
s2θ

−8(a5 + 2a4) −16a17 2(fW − fB)

∆g
(2)
HZγ

cθ
sθ

4
s2θ
c2
θ
aB − 4aW + 8 c2θ

c2
θ
a1 16a12 2

s2θ
c2
θ
fBB − 2fWW + c2θ

c2
θ
fBW

∆g
(1)
HZZ

1
c2
θ

−4
c2θ
s2
θ
a5 + 8a4 −8

c2θ
s2
θ
a17

c2θ
s2
θ
fW + fB

∆g
(2)
HZZ − c2θ

s2
θ

2
s4θ
c4
θ
aB + 2aW + 8

s2θ
c2
θ
a1 −8a12

s4θ
c4
θ
fBB + fWW +

s2θ
c2
θ
fBW

∆g
(3)
HZZ

m2
Z
e2

−2cH + 2(2aC − cC)− 8(aT − cT ) − fΦ,1 + 2fΦ,4 − 2fΦ,2

∆g
(4)
HZZ − 1

s2
2θ

16a7 32a25 (∗)

∆g
(5)
HZZ − 1

s2
2θ

16a10 32a19 (∗)

∆g
(6)
HZZ − 1

s2
2θ

16a9 32a15 (∗)

∆g
(1)
HWW

1
s2
θ

−4a5 − fW

∆g
(2)
HWW

1
s2
θ

−4aW − −2fWW

∆g
(3)
HWW

m2
Zc

2
θ

e2
−4cH+4(2aC−cC)+ 32e2

c2θ
c1+

16c2θ
c2θ

cT −32e2

s2
θ
c12

−2(3c2θ−s
2
θ)

c2θ
fΦ,1+4fΦ,4−4fΦ,2+ 4e2

c2θ
fBW

∆g
(4)
HWW − 1

s2
θ

8a7 − (∗)

∆g
(5)
HWW − 1

s2
θ

4a10 − (∗)

∆g
(6)
HWW − 1

s2
θ

8a9 − (∗)

Table 2. The trilinear Higgs-gauge bosons couplings defined in eq. (4.8). The coefficients in the

second column are common to both the chiral and linear expansions. The contributions from the

operators weighted by ξ and ξ≥2 are listed in the third and fourth columns, respectively. For

comparison, the last column exhibits the corresponding expressions for the linear expansion at

order d = 6. The star (∗) in the last column indicates the link between the chiral operators P7(h),

P9(h) and P10(h), and their linear sibling O�Φ, without implying a physical impact of the latter

on the observables considered, as explained in the text and in ref. [140].

comparison, the corresponding expressions in terms of the coefficients of the linear d = 6

operators in eq. (3.7) are also shown.13

Notice that the bosonic operators PH(h) and PC(h) induce universal shifts to the SM-

like couplings of the Higgs to weak gauge bosons. Similarly PH(h), induces universal shifts

to the Yukawa couplings to fermions, see eq. (FR.32) in appendix D. It is straightforward

to identify the link between the coefficients of these operators and the parameters a and c

defined in refs. [17, 26, 62] assuming custodial invariance, which reads14

a = 1− ξcH
2

+
ξ(2aC − cC)

2
, c = sY

(
1− ξcH

2

)
. (4.11)

13Alternatively the coefficient of ∆g
(3)
HWW can be defined in terms of the measured value of MW as M2

W /e
2.

In this case the entries in columns 3–5 read −4cH + 4(2aC − cC), −32 e
2

s2
θ

, and −2fΦ,1 + 4fΦ,4 − 4fΦ,2

respectively.
14Supplementary terms are present when taking into account the custodial breaking couplings considered

in this paper.
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Coeff. Chiral Linear

×e2/4s2
θ ×ξ ×ξ2 ×v2/Λ2

∆g
(1)
WW 1

s22θ
e2c2θ

cT +
8s2θ
c2θ

c1+4c3 2c11−16c12+8c13
fW
2

+
s2θ
c2θ
fBW− s22θ

4c2θe
2 fΦ1

∆g
(2)
WW 1

s22θ
e2c2θ

cT +
8s2θ
c2θ

c1+4c3−4c6 −2c11−16c12+8c13
fW
2

+
s2θ
c2θ
fBW− s22θ

4c2θe
2 fΦ1 + (∗)

∆g
(1)
ZZ

1
c4
θ

c6 c11+2c23+2c24+4c26ξ
2 (∗)

∆g
(3)
ZZ

1
c2
θ

s22θc
2
θ

e2c2θ
cT +

2s22θ
c2θ

c1+4c2θc3−2s4
θc9 2c11+4s2

θc16+2c24
fW c2θ

2
+

s22θ
4c2θ

fBW− s22θc
2
θ

4e2c2θ
fΦ1+(∗)

∆g
(4)
ZZ

1
c2
θ

2s22θc
2
θ

e2c2θ
cT +

4s22θ
c2θ

c1+8c2θc3−4c6 −4c23 fW c
2
θ+2

s22θ
4c2θ

fBW− s22θc
2
θ

2e2c2θ
fΦ1 + (∗)

∆g
(3)
γγ s2

θ −2c9 − (∗)

∆g
(3)
γZ

sθ
cθ

s22θ
e2c2θ

cT +
8s2θ
c2θ

c1+4c3+4s2
θc9 −4c16

fW
2

+
s2θ
c2θ
fBW− s22θ

4c2θe
2 fΦ1 + (∗)

∆g
(4)
γZ

sθ
cθ

2s22θ
e2c2θ

cT +
16s2θ
c2θ

c1+8c3 − fW +2
s2θ
c2θ
fBW− s22θ

2c2θe
2 fΦ1

∆g
(5)
γZ

sθ
cθ

− 8c14 −

Table 3. Effective couplings parametrizing the vertices of four gauge bosons defined in eq. (4.12).

The contributions from the operators weighted by ξ and ξ≥2 are listed in the third and fourth

columns, respectively. For comparison, the last column exhibits the corresponding expressions for

the linear expansion at order d = 6. The star (∗) in the last column indicates the link between the

chiral operators P6(h) and P9(h), and their linear sibling O�Φ, without implying a physical impact

of the latter on the observables considered, as explained in the text and in ref. [140].

Quartic gauge-boson couplings. The quartic gauge boson couplings also receive con-

tributions from the operators in eqs. (2.6)–(2.8). The corresponding effective Lagrangian

reads

L4X ≡ g2

{
g

(1)
ZZ(ZµZ

µ)2 + g
(1)
WW W+

µ W
+µW−ν W

−ν − g
(2)
WW (W+

µ W
−µ)2

+ g
(3)
V V ′W

+µW−ν
(
VµV

′
ν + V ′µVν

)
− g

(4)
V V ′W

+
ν W

−νV µV ′µ

+ ig
(5)
V V ′ε

µνρσW+
µ W

−
ν VρV

′
σ

}
, (4.12)

where V V ′ = {γγ, γZ, ZZ}. Notice that all these couplings are C and P even, except for

g
(5)
V V ′ that is CP even but both C and P odd. Some of these couplings are nonvanishing at

tree-level in the SM:

g
(1)SM
WW =

1

2
, g

(2)SM
WW =

1

2
, g

(3)SM
ZZ =

c2
θ

2
, g(3)SM

γγ =
s2
θ

2
,

g
(3)SM
Zγ =

s2θ

2
, g

(4)SM
ZZ = c2

θ , g(4)SM
γγ = s2

θ , g
(4)SM
Zγ = s2θ ,

(4.13)

where the notation defined in eq. (4.9) has been used and the expression for the weak

mixing angle can bee found in eq. (4.2). Table 3 shows the contributions to the effective

quartic couplings from the chiral operators in eqs. (2.6)–(2.8) and from the linear operator

in eq. (3.3).
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(De)correlation formulae. Some operators of the non-linear Lagrangian in section 2

participate in more than one of the couplings in tables 1 and 2. This fact leads to interesting

series of relations that relate different couplings. First, simple relations on the TGV sector

results:

∆κZ +
s2
θ

c2
θ

∆κγ −∆gZ1 =
16e2

s2
θ

(2c12 − c13)ξ2 , (4.14)

∆gγ6 +
c2
θ

s2
θ

∆gZ6 = −e
2

s4
θ

c16 ξ
2 , (4.15)

while other examples of relations involving HVV couplings are:

g
(1)
HWW − c

2
θ g

(1)
HZZ − cθsθ g

(1)
HZγ =

2e2

vs2
θ

a17ξ
2 , (4.16)

2c2
θ g

(2)
HZZ + 2sθcθ g

(2)
HZγ + 2s2

θ gHγγ − g
(2)
HWW =

4e2

vs2
θ

a12ξ
2 , (4.17)

∆g
(4)
HZZ −

1

2c2
θ

∆g
(4)
HWW = − 8e2

vs2
2θ

a25 ξ
2 , (4.18)

∆g
(5)
HZZ −

1

c2
θ

∆g
(5)
HWW = − 8e2

vs2
2θ

a19 ξ
2 , (4.19)

∆g
(6)
HZZ −

1

2c2
θ

∆g
(6)
HWW = − 8e2

vs2
2θ

a15 ξ
2 (4.20)

The non-vanishing terms on the right-hand side of eqs. (4.14)–(4.17) stem from ξ2-weighted

terms in the non-linear Lagrangian. It is interesting to note that they would vanish in the

following cases: i) the d = 6 linear limit;15 ii) in the ξ−truncated non-linear Lagrangian;

iii) in the custodial preserving limit. The first two relations with a vanishing right-hand

side where already found in ref. [33]. Any hypothetical deviation from zero in the data

combinations indicated by the left-hand side of those equations would thus be consistent

with either d = 8 corrections of the linear expansion or a non-linear realisation of the

underlying dynamics.

Furthermore, we found an interesting correlation which only holds in the linear regime

at order d = 6, it mixes TGV and HVV couplings and stems from comparing tables 1

and 2:

∆κZ −∆gZ1 =
vsθ
2cθ

[(
c2
θ − s2

θ

) (
g

(1)
HZγ + 2g

(2)
HZγ

)
+ 2sθcθ

(
2gHγγ − g(1)

HZZ − 2g
(2)
HZZ

)]
.

(4.21)

This relation does not hold in the non-linear regime, not even when only ξ−weighted

operators are considered. Its verification from experimental data would be an excellent

test of BSM physics in which the EWSB is linearly realized and dominated by d = 6

corrections.

The above general (de)correlations are a few examples among many [68].

15Eq. (4.14) with vanishing right-hand side was already known [76, 102] to hold in the linear regime at

order d = 6.
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When in addition the strong experimental constraints on the S and T parameters

are applied, disregarding thus cT and c1 (equivalently, fφ1 and fBW for the linear case),

supplementary constraints follow, e.g.:

2

m2
Z

g
(3)
HZZ −

1

m2
W + δm2

W

g
(3)
HWW =

16e2

v s2
θ

a12ξ
2 ,

2gHγγ +
cθ
sθ
g

(2)
HZγ − g

(2)
HWW = − 4e2

v s2
θ

a12ξ
2 ,

2g
(2)
HZZ +

sθ
cθ
g

(2)
HZγ − g

(2)
HWW = − 4e2

v s2
θ

a12ξ
2 ,

−2s2
θ

c2
θ − s2

θ

gHγγ +
2c2
θ

c2
θ − s2

θ

g
(2)
HZZ − g

(2)
HWW = − 4e2

v s2
θ

a12ξ
2 ,

(4.22)

where again the non-zero entries on the right-hand sides vanish in either the d = 6 linear

or the ξ-truncated non-linear limits.

Counting of degrees of freedom for the HVV Lagrangian. Given the present

interest in the gauge-h sector, we analyze here the number of degrees of freedom involved

in the HVV Lagrangian, eq. (4.8), for on-shell and off-shell gauge and Higgs bosons, with

massive and massless fermions.

This can be schematically resumed as follows: for the massive fermion case,

phen. couplings: 16
i)−→ 12 (∆g5,6

HV V = 0)
ii)−→ 10 (∆g4

HV V redundant)

op. coefficients: 17
i)−→ 13 (P11,P12,P16,P17 irrelevant)

ii)−→ 11 (P7,P25 redundant)

where the first line refers to the phenomenological couplings appearing in eq. (4.8), while

the second one to the operator coefficients of the non-linear basis in eq. (2.5). Moreover, i)

denotes the limit of on-shell gauge bosons, i.e. ∂µZµ = 0 and ∂µW±µ = 0, while ii) refers to

the limit of, in addition, on-shell h. In brackets we indicate the couplings and the operator

coefficients that are irrelevant or redundant under the conditions i) or ii).

If fermion masses are set to zero, the conditions ∂µZµ = 0 and ∂µW±µ = 0 hold also

for off-shell gauge bosons, and therefore the counting starts with 12 phenomenological

couplings and 13 operator coefficients.

This analysis for the number of operator coefficients refers to the full non-linear La-

grangian in eq. (2.5), which includes the custodial breaking operators.

Up to this point, as well as in appendices A, C and D for the EOM, d = 6 siblings

and Feynman rules, respectively, all non-linear pure gauge and gauge-h operators of the

chiral Lagrangian eq. (2.1) have been taken into account. The next subsection describes

the results of the numerical analysis, and there instead the value of fermion masses on

external legs will be neglected. This means that operators P9(h), P10(h), P15(h), P16(h),

and P19−21(h) become redundant then, and will not be analyzed.
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4.2 Present bounds on operators weighted by ξ

At present, the most precise determination of S, T , U from a global fit to electroweak

precision data (EWPD) yields the following values and correlation matrix [99]

∆S = 0.00± 0.10 ∆T = 0.02± 0.11 ∆U = 0.03± 0.09 (4.23)

ρ =

 1 0.89 −0.55

0.89 1 −0.8

−0.55 −0.8 1

 . (4.24)

Operators P1(h) and PT (h) contribute at tree-level to these observables, see eq. (4.6) and

consequently they are severely constrained. The corresponding 95% CL allowed ranges for

their coefficients read

− 4.7× 10−3 ≤ ξc1 ≤ 4× 10−3 and − 2× 10−3 ≤ ξcT ≤ 1.7× 10−3 . (4.25)

These constraints render the contribution of P1(h) and PT (h) to the gauge-boson self-

couplings and to the present Higgs data too small to give any observable effect. Conse-

quently we will not include them in the following discussion.

As for the ξ-weighted TGV contributions from P2(h) and P3(h), their impact on the

coefficients ∆κγ , ∆gZ1 and ∆κZ was described in table 1. At present, the most precise

determination of TGV in this scenario results from the two-dimensional analysis in ref. [103]

which was performed in terms of ∆κγ and ∆gZ1 with ∆κZ determined by the relation

eq. (4.14) with the right-handed side set to zero:

κγ = 0.984+0.049
−0.049 and gZ1 = 1.004+0.024

−0.025 , (4.26)

with a correlation factor ρ = 0.11. In table 4 we list the corresponding 90% CL allowed

ranges on the coefficients c2 and c3 from the analysis of the TGV data.

Now, let us focus on the constraints on ξ−weighted operators stemming from the

presently available Higgs data on HVV couplings. There are seven bosonic operators in

this category16

PG(h) , P4(h) , P5(h) , PB(h) , PW (h) , PH(h) , PC(h). (4.27)

To perform a seven-parameter fit to the present Higgs data is technically beyond the scope

of this paper and we will consider sets of “only” six of them simultaneously. We are

presenting below two such analysis. Leaving out a different coupling in each set. In the

first one, A, we will neglect PC(h) and in the second one, B, we will link its contribution

to that of PH(h), so the 6 parameters in each set read:

Set A : aG , a4 , a5 , aB , aW , cH , 2aC − cC = 0 , (4.28)

Set B : aG , a4 , a5 , aB , aW , cH = 2aC − cC . (4.29)

16In present Higgs data analysis, the Higgs state is on-shell and in this case ∆g
(4)
HV V can be recasted

as a m2
H correction to ∆g

(3)
HV V . Thus the contribution from c7, i.e. the coefficient of P7(h) to the Higgs

observables, can be reabsorved in a redefinition of 2aC − cC .
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For both sets we will explore the sensitivity of the results to the sign of the h-fermion

couplings by performing analysis with both values of the discrete parameter sY = ±.

As mentioned above, PH(h) and PC(h) induce a universal shift to the SM-like HVV

couplings involving electroweak gauge bosons, see eq. (FR.15) and (FR.17), while PH(h)

also induces a universal shift to the Yukawa Higgs-fermion couplings, see eq. (FR.32). In

consequence, the two sets above correspond to the case in which the shift of the Yukawa

Higgs-fermion couplings is totally unrelated to the modification of the HVV couplings

involving electroweak bosons (set B), and to the case in which the shift of SM-like HVV

couplings involving electroweak bosons and to the Yukawa Higgs-fermion couplings are the

same (set A). In both sets we keep all other five operators which induce modifications

of the HVV couplings with different Lorentz structures than those of the SM as well as

tree-level contributions to the loop-induced vertices hγγ, hγZ and hgg.

Notice also that a combination of PH(h) and PC(h) can be traded via the EOM

(see third line in eq. (A.11)) by that of fermion-Higgs couplings Pf,αβ(h) plus that of

other operators already present in the six-dimensional gauge-h set analyzed. So our choice

allows us to stay close to the spirit of this work (past and future data confronting directly

the gauge and gauge-h sector), while performing a powerful six-dimensional exploration of

possible correlations.

Technically, in order to obtain the present constraints on the coefficients of the bosonic

operators listed in eqs. (4.28) and (4.29) we perform a chi-square test using the available

data on the signal strengths (µ). We took into account data from Tevatron D0 and CDF

Collaborations and from LHC, CMS, and ATLAS Collaborations at 7 TeV and 8 TeV for

final states γγ, W+W−, ZZ, Zγ, bb̄, and τ τ̄ [104–117]. For CMS and ATLAS data, the

included results on W+W−, ZZ and Zγ correspond to leptonic final states, while for γγ

all the different categories are included which in total accounts for 56 data points. We refer

the reader to refs. [9, 78] for details of the Higgs data analysis.

The results of the analysis are presented in figure 1 which displays the chi-square

(∆χ2
Higgs) dependence from the analysis of the Higgs data on the six bosonic couplings for

the two sets A and B of operators and for the two values of the discrete parameter sY = ±.

In each panel ∆χ2
Higgs is shown after marginalizing over the other five parameters. As seen

in this figure, there are no substantial difference between both sets in the determination of

the five common parameters with only slight differences in aG (more below). The quality of

the fit is equally good for both sets ( |χ2
min,A−χ2

min,B| < 0.5). The SM lays at χ2
SM = 68.1

within the 4% CL region in the six dimensional parameter space of either set.

In figure 1, for each set, the two curves of ∆χ2
Higgs for sY = ± are defined with respect

to the same χ2
min corresponding to the minimum value of the two signs. However, as seen

in the figure, the difference is inappreciable. In other words, we find that in both six-

parameter analysis the quality of the description of the data is equally good for both signs

of the h-fermion couplings. Quantitatively for either set |χ2
min,+ − χ2

min,−| is compatible

with zero within numerical accuracy. If all the anomalous couplings are set to zero the

quality of the fit is dramatically different for both signs with χ2
− − χ2

+ = 26. This arises

from the different sign of the interference between the W - and top-loop contributions to

hγγ which is negative for the SM value sY = + and positive for sY = − which increases
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Figure 1. ∆χ2
Higgs dependence on the coefficients of the seven bosonic operators in eq. (4.27) from

the analysis of all Higgs collider (ATLAS, CMS and Tevatron) data. In each panel, we marginalized

over the five undisplayed variables. The six upper (lower) panels corresponds to analysis with set A

(B). In each panel the red solid (blue dotted) line stands for the analysis with the discrete parameter

sY = +(−).

BR−(h → γγ)/BRSM (h → γγ) ∼ 2.5, a value strongly disfavoured by data. However,

once the effect of the 6 bosonic operators is included — in particular that of PB(h) and

PW (h) which give a tree-level contribution to the hγγ vertex — we find that both signs of

the h-fermion couplings are equally probable.

In the figure we also see that in all cases ∆χ2
Higgs as a function of aG exhibits two degen-

erate minima. They are due to the interference between SM and anomalous contributions
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90% CL allowed range

Set A Set B

aGξ(·10−3) sY = +1: [−1.8, 2.1] ∪ [6.5, 10] sY = +1: [−0.78, 2.4] ∪ [6.5, 12]

sY = −1: [−9.9,−6.5] ∪ [−2.1, 1.8] sY = −1: [−12,−6.5] ∪ [−2.3, 0.75]

a4ξ [−0.47, 0.14]

a5ξ [−0.33, 0.17]

aW ξ [−0.12, 0.51]

aBξ [−0.50, 0.21]

cHξ [−0.66, 0.66] [−1.1, 0.49]

c2ξ [−0.12, 0.076]

c3ξ [−0.064, 0.079]

Table 4. 90% CL allowed ranges of the coefficients of the operators contributing to Higgs data

(aG, a4, a5, aW , aB , and cH) and to TGV (c2 and c3). For the coefficients a4, a5, aW , and aB , for

which the range is almost the same for analysis with both sets and both values of sY we show the

inclusive range of the four analysis. For cH the allowed range is the same for both signs of sY .

possessing exactly the same momentum dependence. Around the secondary minimum the

anomalous contribution is approximately twice the one due to the top-loop but with an

opposite sign. The gluon fusion Higgs production cross section is too depleted for aG values

between the minima, giving rise to the intermediate barrier. Obviously the allowed values

of aG around both minima are different for sY = + and sY = − as a consequence of the

different relative sign of the aG and the top-loop contributions to the hgg vertex. In the

convention chosen for the chiral Lagrangian, the relative sign of both contributions is neg-

ative (positive) for sY = +, (sY = −) so that the non-zero minimum occurs for aG around

0.01 (−0.01). The precise value of the aG coupling at the minima is slightly different for

the analysis with set A and B due to the effect of the coefficient cH near the minima, which

shifts the contribution of the top-loop by a slightly different quantity in both analysis.

Figure 1 also shows that in all cases the curves for a4 and a5 are almost “mirror sym-

metric”. This is due to the strong anticorrelation between those two coefficients, because

they are the dominant contributions to the Higgs branching ratio into two photons, which is

proportional to a4 +a5. In table 4 we list the corresponding 90% CL allowed ranges for the

six coefficients, for the different variants of the analysis. With the expected uncertainties

attainable in the Higgs signal strengths in CMS and ATLAS at 14 TeV with an integrated

luminosity of 300 fb−1 [118, 119], we estimate that the sensitivity to those couplings can

improve by a factor O(3− 5) with a similar analysis.

We finish by stressing that in the context of ξ-weighted operators in the chiral expansion

the results from TGV analysis and those from the HVV analysis apply to two independent

sets of operators as discussed in section 3.2. This is unlike the case of the linear expansion
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Figure 2. Left :A BSM sensor irrespective of the type of expansion: constraints from TGV and

Higgs data on the combinations ΣB = 4(2c2 +a4) and ΣW = 2(2c3−a5), which converge to fB and

fW in the linear d = 6 limit. The dot at (0, 0) signals the SM expectation. Right :A non-linear versus

linear discriminator: constraints on the combinations ∆B = 4(2c2 − a4) and ∆W = 2(2c3 + a5),

which would take zero values in the linear (order d = 6) limit (as well as in the SM), indicated by

the dot at (0, 0). For both figures the lower left panels shows the 2-dimensional allowed regions at

68%, 90%, 95%, and 99% CL after marginalization with respect to the other six parameters (aG,

aW , aB , cH , ∆B , and ∆W ) and (aG, aW , aB , cH , ΣB , and ΣW ) respectively. The star corresponds

to the best fit point of the analysis. The upper left and lower right panels give the corresponding

1-dimensional projections over each of the two combinations.

for which 2c2 = a4 and 2c3 = −a5, which establishes an interesting complementarity in the

experimental searches for new signals in TGV and HVV couplings in the linear regime [78].

Conversely, in the event of some anomalous observation in either of these two sectors, the

presence of this (de)correlation would allow for direct testing of the nature of the Higgs

boson. This is illustrated in figure 2, where the results of the combined analysis of the

TGV and HVV data are projected into combinations of the coefficients of the operators

P2(h), P3(h), P4(h) and P5(h):

ΣB ≡ 4(2c2 + a4) , ΣW ≡ 2(2c3 − a5) ,

∆B ≡ 4(2c2 − a4) , ∆W ≡ 2(2c3 + a5) ,
(4.30)

defined such that at order d = 6 of the linear regime ΣB = cB, ΣW = cW , while ∆B =

∆W = 0. With these variables, the (0, 0) coordinate corresponds to the SM in figure 2 left

panel, while in figure 2 right panel it corresponds to the linear regime (at order d = 6).

Would future data point to a departure from (0, 0) in the variables of the first figure it would

indicate BSM physics irrespective of the linear or non-linear character of the underlying

dynamics; while such a departure in the second figure would be consistent with a non-linear

realization of EWSB. For concreteness the figures are shown for the sY = + analysis with

set A, but very similar results hold for the other variants of the analysis.
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Measurement (±68% CL region) 95% CL region

Experiment gZ5 gZ5 c14ξ
2

OPAL [120] −0.04+0.13
−0.12 [−0.28, 0.21] [−0.16, 0.12]

L3 [121] 0.00+0.13
−0.13 [−0.21, 0.20] [−0.12, 0.11]

ALEPH [122] −0.064+0.13
−0.13 [−0.317, 0.19] [−0.18, 0.11]

90% CL region from indirect bounds [123–125] gZ5 : [−0.08, 0.04] c14ξ
2: [−0.04, 0.02]

Table 5. Existing direct measurements of gZ5 coming from LEP analyses [120–122] as well as the

strongest constraints from the existing indirect bounds on gZ5 in the literature [123–125]. In the

last column we show the translated bounds on c14ξ
2. These bounds were obtained assuming only

gZ5 different from zero while the rest of anomalous TGV were set to the SM values.

4.3 ξ2-weighted couplings: LHC potential to study gZ5

One interesting property of the ξ2-chiral Lagrangian is the presence of operator P14(h)

that generates a non-vanishing gZ5 TGV, which is a C and P odd, but CP even operator;

see eq. (4.7). Presently, the best direct limits on this anomalous coupling come from the

study ofW+W− pairs and singleW production at LEP II energies [120–122]. Moreover, the

strongest bounds on gZ5 originate from its impact on radiative corrections to Z physics [123–

125]; see table 5 for the available direct and indirect limits on gZ5 .

We can use the relation in table 1 to translate the existing bounds on gZ5 into limits

on P14(h). The corresponding limits can be seen in the last column of table 5. We note

here that these limits were obtained assuming only a non-vanishing gZ5 while the rest of

anomalous TGV were set to their corresponding SM value.

At present, the LHC collaborations have presented some data analyses of anomalous

TGV [126–130] but in none of them have they included the effects of gZ5 . A preliminary

study on the potential of LHC 7 to constrain this coupling was presented in ref. [131] where

it was shown that the LHC 7 with a very modest luminosity had the potential of probing

gZ5 at the level of the present indirect bounds. In ref. [131] it was also discussed the use of

some kinematic distributions to characterize the presence of a non-vanishing gZ5 . So far the

LHC has already collected almost 25 times more data than the luminosity considered in this

preliminary study which we update here. Furthermore, in this update we take advantage

of a more realistic background evaluation, by using the results of the experimental LHC

analysis on other anomalous TGV couplings [126].

At the LHC, the anomalous coupling gZ5 contributes to WW and WZ pair production,

with the strongest limits originating from the last reaction [131]. Hence, the present study

is focused on the WZ production channel, where we consider only the leptonic decays of

the gauge bosons for a better background suppression, i.e., we analyze the reaction

pp→ `′±`+`−EmissT , (4.31)
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where `(′) = e or µ. The main background for the gZ5 analysis is the irreducible SM

production of WZ pairs. There are further reducible backgrounds like W or Z production

with jets, ZZ production followed by the leptonic decay of the Z’s with one charged lepton

escaping detection and tt̄ pair production.

We simulated the signal and the SM irreducible background using an implementation

of the anomalous operator gZ5 in FeynRules [132] interfaced with MadGraph 5 [133] for

event generation. We account for the different detection efficiencies by rescaling our simu-

lation to the one done by ATLAS [126] for the study of ∆κZ , gZ1 and λZ . However, we also

cross checked the results using a setup where the signal simulation is based on the same

FeynRules [132] and MadGraph5 [133] implementation, interfaced then with PYTHIA [134]

for parton shower and hadronization and with PGS 4 [135] for detector simulation. Fi-

nally, the reducible backgrounds for the 7 TeV analysis were obtained from the simulations

presented in the ATLAS search [126], and they were properly rescaled for the 8 TeV and

14 TeV runs.

In order to make our simulations more realistic, we closely follow the TGV analysis

performed by ATLAS [126]. Thus, the kinematic study of the WZ production starts with

the usual detection and isolation cuts on the final state leptons. Muons are considered

if their transverse momentum with respect to the collision axis z, pT ≡
√
p2
x + p2

y, and

pseudorapidity η ≡ 1
2 ln |~p|+pz|~p|−pz , satisfy

p`T > 15 GeV , |ηµ| < 2.5 . (4.32)

Electrons must comply with the same transverse momentum requirement than that applied

to muons; however, the electron pseudo-rapidity cut is

|ηe| < 1.37 or 1.52 < |ηe| < 2.47 . (4.33)

To guarantee the isolation of muons (electrons), we required that the scalar sum of the pT
of the particles within ∆R ≡

√
∆η2 + ∆φ2 = 0.3 of the muon (electron), excluding the

muon (electron) track, is smaller than 15% (13%) of the charged lepton pT . In the case

where the final state contains both muons and electrons, a further isolation requirement

has been imposed:

∆Reµ > 0.1 . (4.34)

It was also required that at least two leptons with the same flavour and opposite charge

are present in the event and that their invariant mass is compatible with the Z mass, i.e.

M`+`− ∈ [MZ − 10, MZ + 10] GeV. (4.35)

A further constraint imposed is that a third lepton is present which passes the above

detection requirements and whose transverse momentum satisfies

p`T > 20 GeV . (4.36)
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Moreover, with the purpose of suppressing most of the Z+jets and other diboson production

background, we required

Emiss
T > 25 GeV and MW

T > 20 GeV , (4.37)

where Emiss
T is the missing transverse energy and the transverse mass is defined as

MW
T =

√
2p`TE

miss
T (1− cos(∆φ)) , (4.38)

with p`T being the transverse momentum of the third lepton, and where ∆φ is the azimuthal

angle between the missing transverse momentum and the third lepton. Finally, it was

required that at least one electron or one muon has a transverse momentum complying

with

p
e(µ)
T > 25 (20) GeV. (4.39)

Our Monte Carlo simulations have been tuned to the ATLAS ones [126], so as to

incorporate more realistic detection efficiencies. Initially, a global k-factor was introduced

to account for the higher order corrections to the process in eq. (4.31) by comparing our

leading order prediction to the NLO one used in the ATLAS search [126], leading to k ∼ 1.7.

Next, we compared our results after cuts with the ones quoted by ATLAS in table 1 of

ref. [126]. We tuned our simulation by applying a correction factor per flavour channel (eee,

eeµ, eµµ and µµµ) that is equivalent to introducing a detection efficiency of εe = 0.8 for

electrons and εµ = 0.95 for muons. These efficiencies have been employed in our simulations

for signal and backgrounds.

After applying all the above cuts and efficiencies, the cross section for the process (4.31)

in the presence of a non-vanishing gZ5 can be written as17

σ = σbck + σSM + σint g
Z
5 + σano

(
gZ5
)2
, (4.40)

where σSM denotes the SM contribution to W±Z production, σint stands for the interfer-

ence between this SM process and the anomalous gZ5 contribution and σano is the pure

anomalous contribution. Furthermore, σbck corresponds to all background sources except

for the SM EW W±Z production. We present in table 6 the values of σSM , σint and σano
for center-of-mass energies of 7, 8 and 14 TeV, as well as the cross section for the reducible

backgrounds.

In order to quantify the expected limits on gZ5 , advantage has been taken in this analysis

of the fact that anomalous TGVs enhance the cross sections at high energies. Ref. [131]

shows that the variables Mrec
WZ (the reconstructed W−Z invariant mass), p` max

T and pZT are

able to trace well this energy dependence, leading to similar sensitivities to the anomalous

TGV. Here, we chose pZT to study gZ5 because this variable is strongly correlated with the

subprocess center-of-mass energy (ŝ), and, furthermore, it can be directly reconstructed

with good precision from the measured lepton momenta. The left (right) panel of figure 3

depicts the number of expected events with respect to the Z transverse momentum for the

17We assumed in this study that all anomalous TGV vanish except for gZ5 .
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COM Energy σbck (fb) σSM (fb) σint (fb) σano (fb)

7 TeV 14.3 47.7 6.5 304

8 TeV 16.8 55.3 6.6 363

14 TeV 29.0 97.0 9.1 707

Table 6. Values of the cross section predictions for the process pp→ `′±`+`−EmissT after applying

all the cuts described in the text. σSM is the SM contribution coming from EW W±Z production,

σint is the interference between this SM process and the anomalous gZ5 contribution, σano is the

pure anomalous contribution and σbck corresponds to all background sources except for the SM

EW W±Z production.

Figure 3. The left (right) panel displays the number of expected events as a function of the Z

transverse momentum for a center-of-mass energy of 7 (14) TeV, assuming an integrated luminosity

of 4.64 (300) fb−1. The black histogram corresponds to the sum of all background sources except

for the SM electroweak pp→W±Z process, while the red histogram corresponds to the sum of all

SM backgrounds, and the dashed distribution corresponds to the addition of the anomalous signal

for gZ5 = 0.2 (gZ5 = 0.1). The last bin contains all the events with pZT > 180 GeV.

7 (14) TeV run and an integrated luminosity of 4.64 (300) fb−1. As illustrated by this

figure, the existence of an anomalous gZ5 contribution enhances the tail of the pZT spectrum,

signaling the existence of new physics.

Two procedures have been used to estimate the LHC potential to probe anomalous gZ5
couplings. In the first approach, we performed a simple event counting analysis assuming

that the number of observed events correspond to the SM prediction (gZ5 = 0) and we

look for the values of gZ5 which are inside the 68% and 95% CL allowed regions. As

suggested by ref. [131], the following additional cut was applied in this analysis to enhance

the sensitivity to gZ5 :

pZT > 90 GeV. (4.41)

On a second analysis, a simple χ2 was built based on the contents of the different bins of
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68% CL range 95% CL range

Data sets used Counting pZT > 90 GeV pZT binned analysis Counting pZT > 90 GeV pZT binned analysis

7+8 TeV (−0.066, 0.058) (−0.057, 0.050) (−0.091, 0.083) (−0.080, 0.072)

(4.64+19.6 fb−1)

7+8+14 TeV (−0.030, 0.022) (−0.024, 0.019) (−0.040, 0.032) (−0.033, 0.028)

(4.64+19.6+300 fb−1)

Table 7. Expected sensitivity on gZ5 at the LHC for the two different procedures described in the

text.

the pZT distribution, in order to obtain more stringent bounds. The binning used is shown

in figure 3. Once again, it was assumed that the observed pZT spectrum corresponds to

the SM expectations and we sought for the values of gZ5 that are inside the 68% and 95%

allowed regions. The results of both analyses are presented in table 7.

We present in the first row of table 7 the expected LHC limits for the combination

of the 7 TeV and 8 TeV existing data sets, where we considered an integrated luminosity

of 4.64 fb−1 for the 7 TeV run and 19.6 fb−1 for the 8 TeV one. Therefore, the attainable

precision on gZ5 at the LHC 7 and 8 TeV runs is already higher than the present direct

bounds stemming from LEP and it is also approaching the present indirect limits. Finally,

the last row of table 7 displays the expected precision on gZ5 when the 14 TeV run with

an integrated luminosity of 300 fb−1 is included in the combination. Here, once more,

it was assumed that the observed number of events is the SM expected one. The LHC

precision on gZ5 will approach the per cent level, clearly improving the present both direct

and indirect bounds.

4.4 Anomalous quartic couplings

As shown in section 3.4, in the chiral expansion several operators weighted by ξ or higher

powers contribute to quartic gauge boson vertices without inducing any modification to

TGVs. Therefore, their coefficients are much less constrained at present, and one can

expect still larger deviations on future studies of quartic vertices at LHC for large values

of ξ. This is unlike in the linear expansion, in which the modifications of quartic gauge

couplings that do not induce changes to TGVs appear only when the d = 8 operators are

considered [83]. For instance, the linear operators similar to P6(h) and P11(h) are LS,0 and

LS,1 in ref. [83].

Of the five operators giving rise to purely quartic gauge boson vertices (P6(h), P11(h),

P23(h), P24(h), P26(h)), none modifies quartic vertices including photons while all generate

the anomalous quartic vertex ZZZZ that is not present in the SM. Moreover, all these

operators but P26(h) modify the ZZW+W− vertex, while only P6(h) and P11(h) also

induce anomalous contributions to W+W−W+W−.

Presently, the most stringent bounds on the coefficients of these operators are indirect,

from their one-loop contribution to the EWPD derived in ref. [79] where it was shown that
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coupling 90% CL allowed region

c6 ξ [−0.23, 0.26]

c11 ξ
2 [−0.094, 0.10]

c23 ξ
2 [−0.092, 0.10]

c24 ξ
2 [−0.012, 0.013]

c26 ξ
4 [−0.0061, 0.0068]

Table 8. 90% CL limits on the anomalous quartic couplings from their one-loop contribution to

the EWPD. The bounds were obtained assuming only one operator different from zero at a time

and for a cutoff scale Λs = 2 TeV.

the five operators correct α∆T while render α∆S = α∆U = 0. In table 8 we give the

updated indirect bounds using the determination of the oblique parameters in eq. (4.24).

At the LHC these anomalous quartic couplings can be directly tested in the production

of three vector bosons (V V V ) or in vector boson fusion (VBF) production of two gauge

bosons [81]. At lower center-of-mass energies the best limits originate from the V V V

processes, while the VBF channel dominates for the 14 TeV run [80–83, 136].

At the LHC with 14 TeV center-of-mass energy, the couplings c6 and c11 can be con-

strained by combining their impact on the VBF channels

pp→ jjW+W− and pp→ jj(W+W+ +W−W−) , (4.42)

where j stands for a tagging jet and the final state W ’s decay into electron or muon plus

neutrino. It was shown in ref. [83] that the attainable 99% CL limits on these couplings are

− 12× 10−3 < c6 ξ < 10× 10−3 , −7.7× 10−3 < c11 ξ
2 < 14× 10−3 (4.43)

for an integrated luminosity of 100 fb−1. Notice that the addition of the channel pp→ jjZZ

does not improve significantly the above limits [80].

5 Conclusions

In this paper we have made a comparative study of the departures from the Standard

Model predictions in theories based on linear and non-linear realizations of SU(2)L×U(1)Y
gauge symmetry breaking. To address this question in a model-independent way, we have

considered effective Lagrangians containing either a light fundamental Higgs in the linear

realization or a light dynamical Higgs in the non-linear one. We have exploited the fact

that these two expansions are intrinsically different from the point of view of the presence

or absence, respectively, of a global SU(2)L symmetry in the effective Lagrangian, with

the light Higgs scalar behaving as a singlet in the chiral case. Less symmetry means

more possible invariant operators at a given order, and the result is that the non-linear

realization for a light dynamical Higgs particle is expected to exhibit a larger number of
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independent couplings than linear ones. This has been explored here concentrating on the

CP-even operators involving pure gauge and gauge-h couplings. First, in section 2 we have

presented the maximal set of independent (and thus non-redundant) operators of that type

contained in the effective chiral Lagrangian for a light dynamical Higgs, up to operators

with four derivatives. In section 3.1 the analogous complete basis of independent operators

up to dimension six in the linear expansion is presented. Comparing both sets of operators,

we have established the relations and differences between the chiral and the linear bases.

In particular, in sections 3.2 and 3.4 we have identified two sources of discriminating

signatures. For small values of the ξ parameter the counting of operators is not the same

in both sets, being larger by six for the chiral expansion. This implies that, even keeping

only operators weighted by ξ, the expected deviations from the SM predictions in the Higgs

couplings to gauge bosons and that of the triple gauge boson self-couplings are independent

in the chiral expansion, unlike in the linear expansion at dimension six; one interesting set

of (de)correlated couplings is explored in details as indicators of a non-linear character.

Conversely, when considering operators weighted by ξn with n ≥ 2 in the chiral expansion,

we find anomalous signals which appear only at dimension eight of the linear Lagrangian;

they may thus be detected with larger (leading) strength for a non-linear realization of

EWSB than for a linear one, for sizeable values of ξ.

In order to quantify the observability of the above effects we have implemented the

renormalization procedure as described in section 4.1 and derived the corresponding Feyn-

man rules for the non-linear expansion (which we present in the detail in appendix D, for

the complete set of independent operators under discussion). Neglecting external fermion

masses only in the numerical analysis, the results of our simulations for some of the dis-

criminating signatures at LHC are presented in sections 4.2– 4.4. To our knowledge, this is

the first six-parameter analysis in the context of the non-linear expansion, focusing on the

ξ-weighted pure gauge and gauge-h effective couplings. In particular we have derived the

present bounds on the coefficients of the latter from the analysis of electroweak precision

physics, triple gauge boson coupling studies and Higgs data. The results are summarized

in figure 1 and table 4 and the corresponding level of decorrelation between the triple

gauge couplings and Higgs effects is illustrated in figure 2: the presently allowed values for

the parameters ciξ and aiξ turn out to be of order 1, with only few exceptions bounded

to the per cent level. With the expected uncertainties attainable in CMS and ATLAS at

14 TeV, that sensitivity can be improved by a factor O(3− 5). Furthermore, our study of

the present sensitivity to the C and P odd operator in the analysis of WWZ vertex, with

the accumulated luminosity of LHC7+8 and with LHC14 in the future, show that per cent

precision on the coupling of the operator P14(h) is foreseeable. Similar precision should be

attainable for the coefficients of the operators leading to generic quartic gauge couplings

P6(h) and P11(h).
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A EOM and fermion operators

The EOM can be extracted from the L0 part of the chiral Lagrangian, eq. (2.2); as we will

work at first order in ∆L they read:18

(DµWµν)a =
g

2
Q̄Lσ

aγνQL +
g

2
L̄Lσ

aγνLL +
igv2

4
Tr[Vνσ

a]

(
1 +

h

v

)2

(A.1)

∂µBµν = − ig
′v2

4
Tr[TVµ]

(
1 +

h

v

)2

+ g′
∑
i=L,R

(
Q̄ihiγνQi +

1

6
L̄LγνLL

)
(A.2)

�h = −δV (h)

δh
− v + h

2
Tr[VµV

µ]− sY√
2

(
Q̄LUYQQR + L̄LUYLLR + h.c.

)
(A.3)

[
Dµ

((v + h)2

2
√

2
U†DµU

)]
ij

=


− (v + sY h)

[
(Q̄RY†Q)j(U

†QL)i + (L̄RY†L)j(U
†LL)i

]
for i 6= j

0 for i = j

(A.4)

i /DQL =
v + sY h√

2
UYQQR i /DQR =

v + sY h√
2

Y†QU†QL (A.5)

i /DLL =
v + sY h√

2
UYLLR i /DLR =

v + sY h√
2

Y†LU†LL , (A.6)

where hL,R are the 2× 2 matrices of hypercharge for the left- and right-handed quarks.

18With alternative choices for the separation L0 versus ∆L the EOM are correspondingly modified [63,

64, 73]: this is of no relevance to the focus of this paper, which explores the tree-level impact of effective

operators.
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By using these EOM, it is possible to identify relations between some bosonic operators

listed in eqs. (2.6)–(2.8) and specific fermion operators. This allows us to trade those

bosonic operators by the corresponding fermionic ones: this procedure can turn out to be

very useful when analysing specific experimental data. For instance, if deviations from the

SM values of the h-fermion couplings were found, then the following three operators,

PU,αβ(h) = − v√
2
Q̄LαU (FU(h)P↑QR)β + h.c. ,

PD,αβ(h) = − v√
2
Q̄LαU (FD(h)P↓QR)β + h.c. ,

PE,αβ(h) = − v√
2
L̄LαU (FE(h)P↓LR)β + h.c. ,

(A.7)

would be a good choice for an operator basis. In the previous equations the two projectors

P↑ =

(
1

0

)
P↓ =

(
0

1

)
, (A.8)

have been introduced.

On the contrary, without including the operators in eqs. (A.7), the bosonic basis defined

in eqs. (2.6)–(2.10) is blind to these directions. The fermionic operators that arise applying

the EOM to bosonic operators in the basis above is presented in the following list:

Weighted by ξ:

PU,αβ(h) = − v√
2
Q̄LαU (FU(h)P↑QR)β + h.c.

PD,αβ(h) = − v√
2
Q̄LαU (FD(h)P↓QR)β + h.c.

PE,αβ(h) = − v√
2
L̄LαU (FE(h)P↓LR)β + h.c.

P1Q,αβ(h) =
α

2
Q̄Lαγ

µ{T,Vµ} (F1Q(h)QL)β

P1L,αβ(h) =
α

2
L̄Lαγ

µ{T,Vµ} (F1L(h)LL)β

P1U,αβ(h) =
α

2
Q̄Rαγ

µ
{
σ3, Ṽµ

}
(F1U (h)P↑QR)β

P1D,αβ(h) =
α

2
Q̄Rαγ

µ
{
σ3, Ṽµ

}
(F1D(h)P↓QR)β

P1N,αβ(h) =
α

2
L̄Rαγ

µ
{
σ3, Ṽµ

}
(F1N (h)P↑LR)β

P1E,αβ(h) =
α

2
L̄Rαγ

µ
{
σ3, Ṽµ

}
(F1E(h)P↓LR)β

P2Q,αβ(h) = iQ̄Lαγ
µVµ (F2Q(h)QL)β

P2L,αβ(h) = iL̄Lαγ
µVµ (F2L(h)LL)β

P3Q,αβ(h) = iQ̄Lαγ
µTVµT (F3Q(h)QL)β

P3L,αβ(h) = iL̄Lαγ
µTVµT (F3L(h)LL)β

(A.9)
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P4UU,αβγδ(h) =
∑
a

[
Q̄Lασ

aU (F4U (h)P↑QR)β − h.c.
][
Q̄Lγσ

aU
(
F ′4U (h)P↑QR

)
δ
− h.c.

]
P4DD,αβγδ(h) =

∑
a

[
Q̄Lασ

aU (F4D(h)P↓QR)β − h.c.
][
Q̄Lγσ

aU
(
F ′4D(h)P↓QR

)
δ
− h.c.

]
P4UD,αβγδ(h) =

∑
a

[
Q̄Lασ

aU (F4U (h)P↑QR)β − h.c.
][
Q̄Lγσ

aU
(
F ′4D(h)P↓QR

)
δ
− h.c.

]
P4DU,αβγδ(h) =

∑
a

[
Q̄Lασ

aU (F4D(h)P↓QR)β − h.c.
][
Q̄Lγσ

aU
(
F ′4U (h)P↑QR

)
δ
− h.c.

]
P4EE,αβγδ(h) =

∑
a

[
L̄Lασ

aU (F4E(h)P↓LR)β − h.c.
][
L̄Lγσ

aU
(
F ′4E(h)P↓LR

)
δ
− h.c.

]
P4UE,αβγδ(h) =

∑
a

[
Q̄Lασ

aU (F4U (h)P↑QR)β − h.c.
][
L̄Lγσ

aU
(
F ′4E(h)P↓LR

)
δ
− h.c.

]
P4DE,αβγδ(h) =

∑
a

[
Q̄Lασ

aU (F4D(h)P↓QR)β − h.c.
][
L̄Lγσ

aU
(
F ′4E(h)P↓LR

)
δ
− h.c.

]
P4EU,αβγδ(h) =

∑
a

[
L̄Lασ

aU (F4E(h)P↓LR)β − h.c.
][
Q̄Lγσ

aU
(
F ′4U (h)P↑QR

)
δ
− h.c.

]
P4ED,αβγδ(h) =

∑
a

[
L̄Lασ

aU (F4E(h)P↓LR)β − h.c.
][
Q̄Lγσ

aU
(
F ′4D(h)P↓QR

)
δ
− h.c.

]
P5UU,αβγδ(h) =

[
Q̄LαTU (F5U (h)P↑QR)β − h.c.

][
Q̄LγTU

(
F ′5U (h)P↑QR

)
δ
− h.c.

]
P5DD,αβγδ(h) =

[
Q̄LαTU (F5D(h)P↓QR)β − h.c.

][
Q̄LγTU

(
F ′5D(h)P↓QR

)
δ
− h.c.

]
P5UD,αβγδ(h) =

[
Q̄LαTU (F5U (h)P↑QR)β − h.c.

][
Q̄LγTU

(
F ′5D(h)P↓QR

)
δ
− h.c.

]
P5DU,αβγδ(h) =

[
Q̄LαTU (F5D(h)P↓QR)β − h.c.

][
Q̄LγTU

(
F ′5U (h)P↑QR

)
δ
− h.c.

]
P5EE,αβγδ(h) =

[
L̄LαTU (F5E(h)P↓LR)β − h.c.

][
L̄LγTU

(
F ′5E(h)P↓LR

)
δ
− h.c.

]
P5UE,αβγδ(h) =

[
Q̄LαTU (F5U (h)P↑QR)β − h.c.

][
L̄LγTU

(
F ′5E(h)P↓LR

)
δ
− h.c.

]
P5EU,αβγδ(h) =

[
L̄LαTU (F5E(h)P↓LR)δ − h.c.

][
Q̄LγTU

(
F ′5U (h)P↑QR

)
δ
− h.c.

]
P5DE,αβγδ(h) =

[
Q̄LαTU (F5D(h)P↓QR)β − h.c.

][
L̄LγTU

(
F ′5E(h)P↓LR

)
δ
− h.c.

]
P5ED,αβγδ(h) =

[
L̄LαTU (F5E(h)P↓LR)δ − h.c.

][
Q̄LγTU

(
F ′5D(h)P↓QR

)
δ
− h.c.

]
.

Weighted by ξ
√
ξ:

P6U,αβ(h) = Q̄LαVµU (∂µF6U (h)P↑QR)β

P6D,αβ(h) = Q̄LαVµU (∂µF6D(h)P↓QR)β

P6N,αβ(h) = L̄LαVµU (∂µF6N (h)P↑LR)β

P6E,αβ(h) = L̄LαVµU (∂µF6E(h)P↓LR)β

P7U,αβ(h) = Tr[TVµ]Q̄LαTU (∂µF7U (h)P↑QR)β

P7D,αβ(h) = Tr[TVµ]Q̄LαTU (∂µF7D(h)P↓QR)β

P7N,αβ(h) = Tr[TVµ]L̄LαTU (∂µF7N (h)P↑LR)β

(A.10)
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P7E,αβ(h) = Tr[TVµ]L̄LαTU (∂µF7E(h)P↓LR)β

P8U,αβ(h) = Tr[TVµ]Q̄Lα[T,Vµ]U (F8U (h)P↑QR)β

P8D,αβ(h) = Tr[TVµ]Q̄Lα[T,Vµ]U (F8D(h)P↓QR)β

P8N,αβ(h) = Tr[TVµ]L̄Lα[T,Vµ]U (F8N (h)P↑LR)β

P8E,αβ(h) = Tr[TVµ]L̄Lα[T,Vµ]U (F8E(h)P↓LR)β .

Rearranging eqs. (A.1)–(A.4), one can derive the following relations between bosonic

and fermionic operators:

2PB(h) +
1

2
P1(h) +

1

2
P2(h) + P4(h)− g′2PT (h)

(
1 +

h

v

)2

=

=
∑
α

{
1

3
g′2P1Q,αα(h)+

4

3
g′2P1U,αα(h)− 2

3
g′2P1D,αα(h)−g′2P1L,αα(h)−2g′2P1E,αα(h)

}
,

−PW (h)−g2PC(h)

(
1+

h

v

)2

− 1

4
P1(h)− 1

2
P3(h)+P5(h) =

g2

2

∑
α

{
P2Q,αα(h)+P2L,αα(h)

}
,

PH(h)+2PC(h)

(
1+

h

v

)2

+(v+h)F(h)
δV

δh
= sY

v + h√
2

∑
f=U,D,E

∑
αβ

{
Yf,αβPf,αβ(h) + h.c.

}
,

g2PT (h)

(
1 +

h

v

)2

− 1

2
P1(h)− P3(h) +

1

2
P12(h) + P13(h) + P17(h) =

=
g2

2

∑
α

{
(P3Q,αα(h) + P2Q,αα(h)) + (P3L,αα(h) + P2L,αα(h))

}
.

(A.11)

The Fi(h) functions in all operators in these relations are the same, except for PH in the

third line of eq. (A.11), which is related to it by

FH(h) = FC(h) +

(
1 +

h

v

)
δFC(h)

δh
. (A.12)

Applying the EOM in eq. (A.3) to the operators P20(h) and P21(h) allows us to express

them in terms of other operators in the basis, h-gauge boson couplings and Yukawa-like

interactions:

P20(h) = 2F(h)P6(h) + 2F(h)P7(h)− 16

v3

√
F(h)PC(h)

δV

δh

− 8
√

2sy
v3

√
F(h)PC(h)

(
Q̄LUYQQR + L̄LUYLLR + h.c.

)
,

P21(h) = 2F(h)P23(h) + 2F(h)P25(h) +
16

v3

√
F(h)PT (h)

δV

δh

+
8
√

2sy
v3

√
F(h)PT (h)

(
Q̄LUYQQR + L̄LUYLLR + h.c.

)
,

(A.13)

where all Fi(h) appearing explicitly in these expressions and included in the definition of

the operators Pi(h) are the same and defined by

F(h) =

(
1 +

h

v

)2

. (A.14)
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From eqs. (A.1), (A.2) and (A.5), it follows that

iv√
2

Tr(σjDµVµ)

(
1 +

h

v

)2

=
v + sY h

v

(
iQ̄Lσ

jUYQQR + iL̄Lσ
jUYLLR + h.c.

)
− iv√

2
Tr(σjVµ)∂µ

(
1 +

h

v

)2

,

iv√
2

Tr(TDµVµ)

(
1 +

h

v

)2

=
v + sY h

v

(
iQ̄LTUYQQR + iL̄LTUYLLR + h.c.

)
− iv√

2
Tr(TVµ)∂µ

(
1 +

h

v

)2

,

(A.15)

which allows us to rewrite the pure bosonic operators P11−13(h), P10(h) and P19(h) as

combination of other pure bosonic ones in eqs. (2.6)–(2.8) plus fermionic operators in

eqs. (A.9) and (A.10):

P9(h)− P8(h) =
1

v2

∑
f1,f2=U,D,E

∑
αβγδ

Yf1,αβYf2,γδP4f1f2,αβγδ(h)

− 2
√

2

v

∑
f=U,D,N,E

∑
αβ

(Yf,αβP6f,αβ(h)− h.c.) ,

P15(h)− P22(h) =
2

v2

∑
f1,f2=U,D,E

∑
αβγδ

Yf1,αβγδYf2,γδP5f1f2,αβγδ(h)

− 2
√

2

v cos θW

∑
f=U,D,N,E

∑
αβ

(Yf,αβP7f,αβ(h)− h.c.) ,

P16(h) + P18(h) =
∑

f=U,D,N,E

∑
αβ

√
2

v
(Yf,αβP8f,αβ(h)− h.c.) ,

P10(h) + P8(h) =
∑

f=U,D,N,E

∑
αβ

√
2

v
(Yf,αβP6f,αβ(h)− h.c.) ,

P19(h) + P22(h) =
∑

f=U,D,N,E

∑
αβ

√
2

v
(Yf,αβP7f,αβ(h)− h.c.) .

(A.16)

A straightforward consequence is that once the Fi(h) functions in the operators on the

left-hand side of eq. (A.16) are specified, then the Fi(h) functions in the operators on the

right-hand side are no longer general, but take the form of specific expressions.
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B Equivalence of the d = 6 basis with the SILH Lagrangian

The SILH Lagrangian [87] is defined by the following 10 d = 6 linear operators:

OSILH
g = Φ†ΦGaµνG

aµν , OSILH
γ = Φ†B̂µνB̂

µνΦ ,

OSILH
W =

ig

2

(
Φ†σi

↔
DµΦ

)
DνW

µν
i , OSILH

B =
(

Φ†
↔
DµΦ

)
∂νB̂

µν ,

OSILH
HW = (DµΦ)†Ŵµν(DνΦ) , OSILH

HB = (DµΦ)† (DνΦ)B̂µν , (B.1)

OSILH
T =

1

2

(
Φ†

↔
DµΦ

)(
Φ†

↔
D
µ
Φ
)
, OSILH

H =
1

2
∂µ
(

Φ†Φ
)
∂µ

(
Φ†Φ

)
,

OSILH
6 =

1

3

(
Φ†Φ

)3
, OSILH

y =
(

Φ†Φ
)
fLΦYfR + h.c. ,

where Φ†
↔
DµΦ ≡ Φ†DµΦ − DµΦ†Φ and Φ†σi

↔
DµΦ ≡ Φ†σiDµΦ − DµΦ†σiΦ. They can be

related directly to the operators in eqs. (3.3) and (3.4):

OSILH
g ≡ OGG , OSILH

γ ≡ OBB ,
OSILH
B ≡ 2OB +OBW +OBB , OSILH

W ≡ 2OW +OBW +OWW ,

OSILH
HW ≡ OW , OSILH

HB ≡ OB ,
OSILH
T ≡ OΦ,2 − 2OΦ,1 , OSILH

H ≡ OΦ,2 ,

OSILH
6 ≡ OΦ,3 , OSILH

y ≡ 2OΦ,2 + 2OΦ,4 −
(

Φ†Φ
)

Φ†
δV (h)

δΦ†
.

(B.2)

This shows the equivalence of the two linear expansions.

It can also be interesting to show explicitly the connection between the SILH operators

and those of the chiral basis in eqs. (2.6)–(2.8), which is as follows:

OSILH
g =

v2

2g2
s

PG, OSILH
γ =

v2

2
PB,

OSILH
B =

v2

8
(P2 + 2P4) +

v2

8
P1 +

v2

2
PB, OSILH

HB =
v2

16
(P2 + 2P4),+

v2

2
PW ,

OSILH
W =

v2

4
(P3 − 2P5) +

v2

8
P1 OSILH

HW =
v2

8
(P3 − 2P5), (B.3)

OSILH
T =

v2

2
F(h)PT , OSILH

H = v2PH ,

OSILH
y = 3v2PH + v2F(h)PC −

(v + h)3

2

δV (h)

δh
,

where the Fi(h) appearing in these relations and inside the individual Pi(h) operators are

all defined by

F(h) =

(
1 +

h

v

)2

. (B.4)
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C Relations between chiral and linear operators

In this appendix, the connections between the operators of the chiral and linear bases is

discussed. As the number and nature of the leading order operators in the chiral and linear

expansion are not the same, there are pairs of chiral operators that correspond to the same

lowest dimensional linear one: in order to get then a one-to-one correspondence between

these chiral operators and (combinations of) linear ones, operators of higher dimension

should be taken into consideration. For those weighted by a single power of ξ, the list of the

siblings can be read from eq. (3.7). Below, we also indicate which chiral operators, weighted

by higher powers of ξ, should be combined in order to generate the gauge interactions

contained in specific linear ones.

For operators weighted by ξ:

PB(h)→ OBB PW (h)→ OWW PG(h)→ OGG
PC(h)→ OΦ,4 PT (h)→ OΦ,1 PH(h)→ OΦ,2

P1(h)→ OBW P2(h) ,P4(h)→ OB P3(h) ,P5(h)→ OW

(C.1)

P6(h) ,P7(h) ,P8(h) ,P9(h) ,P10(h) ,P�H(h)→ O�Φ

For operators weighted by ξ2:

PDH(h),P20(h)→
[
DµΦ†DµΦ

]2

P11(h),P18(h),P21(h),P22(h),P23(h),P24(h)→
[
DµΦ†DνΦ

]2

P12(h)→
(

Φ†WµνΦ
)2

P13(h),P17(h)→
(

Φ†WµνΦ
)
DµΦ†DνΦ

P14(h)→ εµνρλ
(

Φ†
↔
DρΦ

)(
Φ†σi

↔
DλΦ

)
W i
µν

P15(h),P19(h)→
[
Φ†DµD

µΦ−DµD
µΦ†Φ

]2

P16(h),P25(h)→
(
DνΦ†DµD

µΦ−DµD
µΦ†DνΦ

)(
Φ†

↔
DνΦ

)
(C.2)

For operators weighted by ξ4:

P26(h)→
[(

Φ†
↔
DµΦ

)(
Φ†

↔
DνΦ

)]2
. (C.3)

– 42 –



J
H
E
P
0
3
(
2
0
1
4
)
0
2
4

D Feynman rules

This appendix provides a complete list of all the Feynman rules resulting from the operators

discussed here in the Lagrangian Lchiral of eq. (2.1) (except for the pure Higgs ones weighted

by powers of ξ higher than one). Only diagrams with up to four legs are shown and the

notation Fi(h) = 1 + 2ãi h/v+ b̃i h
2/v2 + . . . has been adopted. Moreover, for brevity, the

products ciãi and cib̃i have been redefined as ai and bi, respectively. For the operators P8,

and P20−22, that contain two functions FX(h) and F ′X(h) we redefine cX ãX ã
′
X → aX . In

all Feynman diagrams the momenta are chosen to be flowing inwards in the vertices and

are computed in the unitary gauge, with the exception of the propagator of the photon

which is written in a generic gauge.

Finally, the standard (that is SM-like) and non-standard Lorentz structures are re-

ported in two distinct columns, on the left and on the right, respectively. Greek indices

indicate flavour and are assumed to be summed over when repeated; whenever they do

not appear, it should be understood that the vertex is flavour diagonal. All the quanti-

ties entering the Feynman diagrams can be expressed in terms of the parameters of the

Z-renormalization scheme, as shown in eq. (4.2).
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