186 research outputs found
Ranges of Atmospheric Mass and Composition of Super Earth Exoplanets
Terrestrial-like exoplanets may obtain atmospheres from three primary
sources: Capture of nebular gases, degassing during accretion, and degassing
from subsequent tectonic activity. Here we model degassing during accretion to
estimate the range of atmospheric mass and composition on exoplanets ranging
from 1 to 30 Earth masses. We use bulk compositions drawn from primitive and
differentiated meteorite compositions. Degassing alone can create a wide range
of masses of planetary atmospheres, ranging from less than a percent of the
planet's total mass up to ~6 mass% of hydrogen, ~20 mass% of water, and/or ~5
mass% of carbon compounds. Hydrogen-rich atmospheres can be outgassed as a
result of oxidizing metallic iron with water, and excess water and carbon can
produce atmospheres through simple degassing. As a byproduct of our atmospheric
outgassing models we find that modest initial water contents (10 mass% of the
planet and above) create planets with deep surface liquid water oceans soon
after accretion is complete.Comment: ApJ, in press. 32 pages, 6 figure
Coreless Terrestrial Exoplanets
Differentiation in terrestrial planets is expected to include the formation
of a metallic iron core. We predict the existence of terrestrial planets that
have differentiated but have no metallic core--planets that are effectively a
giant silicate mantle. We discuss two paths to forming a coreless terrestrial
planet, whereby the oxidation state during planetary accretion and
solidification will determine the size or existence of any metallic core. Under
this hypothesis, any metallic iron in the bulk accreting material is oxidized
by water, binding the iron in the form of iron oxide into the silicate minerals
of the planetary mantle. The existence of such silicate planets has
consequences for interpreting the compositions and interior density structures
of exoplanets based on their mass and radius measurements.Comment: ApJ, in press. 22 pages, 5 figure
Martian Igneous Geochemistry: The Nature of the Martian Mantle
Mafic igneous rocks probe the interiors of their parent objects, reflecting the compositions and mineralogies of their source regions, and the magmatic processes that engendered them. Incompatible trace element contents of mafic igneous rocks are widely used to constrain the petrologic evolution of planets. We focus on incompatible element ratios of martian meteorites to constrain the petrologic evolution of Mars in the context of magma ocean/cumulate overturn models [1]. Most martian meteorites contain some cumulus grains, but regardless, their incompatible element ratios are close to those of their parent magmas. Martian meteorites form two main petrologic/ age groupings; a 1.3 Ga group composed of clinopyroxenites (nakhlites) and dunites (chassignites), and a <1 Ga group composed of basalts and lherzolites (shergottites)
Escape of the martian protoatmosphere and initial water inventory
Latest research in planet formation indicate that Mars formed within a few
million years (Myr) and remained a planetary embryo that never grew to a more
massive planet. It can also be expected from dynamical models, that most of
Mars' building blocks consisted of material that formed in orbital locations
just beyond the ice line which could have contained ~0.1-0.2 wt. % of H2O. By
using these constraints, we estimate the nebula-captured and catastrophically
outgassed volatile contents during the solidification of Mars' magma ocean and
apply a hydrodynamic upper atmosphere model for the study of the soft X-ray and
extreme ultraviolet (XUV) driven thermal escape of the martian protoatmosphere
during the early active epoch of the young Sun. The amount of gas that has been
captured from the protoplanetary disk into the planetary atmosphere is
calculated by solving the hydrostatic structure equations in the protoplanetary
nebula. Depending on nebular properties such as the dust grain depletion
factor, planetesimal accretion rates and luminosities, hydrogen envelopes with
masses >=3x10^{19} g to <=6.5x10^{22} g could have been captured from the
nebula around early Mars. Depending of the before mentioned parameters, due to
the planets low gravity and a solar XUV flux that was ~100 times stronger
compared to the present value, our results indicate that early Mars would have
lost its nebular captured hydrogen envelope after the nebula gas evaporated,
during a fast period of ~0.1-7.5 Myr. After the solidification of early Mars'
magma ocean, catastrophically outgassed volatiles with the amount of ~50-250
bar H2O and ~10-55 bar CO2 could have been lost during ~0.4-12 Myr, if the
impact related energy flux of large planetesimals and small embryos to the
planet's surface lasted long enough, that the steam atmosphere could have been
prevented from condensing. If this was not the case... (continued)Comment: 47 pages, 10 figures, 3 tables, submitted to PS
A Self-Consistent Model of the Circumstellar Debris Created by a Giant Hypervelocity Impact in the HD172555 System
Spectral modeling of the large infrared excess in the Spitzer IRS spectra of
HD 172555 suggests that there is more than 10^19 kg of sub-micron dust in the
system. Using physical arguments and constraints from observations, we rule out
the possibility of the infrared excess being created by a magma ocean planet or
a circumplanetary disk or torus. We show that the infrared excess is consistent
with a circumstellar debris disk or torus, located at approximately 6 AU, that
was created by a planetary scale hypervelocity impact. We find that radiation
pressure should remove submicron dust from the debris disk in less than one
year. However, the system's mid-infrared photometric flux, dominated by
submicron grains, has been stable within 4 percent over the last 27 years, from
IRAS (1983) to WISE (2010). Our new spectral modeling work and calculations of
the radiation pressure on fine dust in HD 172555 provide a self-consistent
explanation for this apparent contradiction. We also explore the unconfirmed
claim that 10^47 molecules of SiO vapor are needed to explain an emission
feature at 8 um in the Spitzer IRS spectrum of HD 172555. We find that unless
there are 10^48 atoms or 0.05 Earth masses of atomic Si and O vapor in the
system, SiO vapor should be destroyed by photo-dissociation in less than 0.2
years. We argue that a second plausible explanation for the 8 um feature can be
emission from solid SiO, which naturally occurs in submicron silicate "smokes"
created by quickly condensing vaporized silicate.Comment: Accepted to the Astrophysical Journa
Three Possible Origins for the Gas Layer on GJ 1214b
We present an analysis of the bulk composition of the MEarth transiting super
Earth exoplanet GJ 1214b using planet interior structure models. We consider
three possible origins for the gas layer on GJ 1214b: direct accretion of gas
from the protoplanetary nebula, sublimation of ices, and outgassing from rocky
material. Armed only with measurements of the planet mass (M_p=6.55+/-0.98
M_{earth}), radius (R_p=2.678+/-0.13 R_{earth}), and stellar irradiation level,
our main conclusion is that we cannot infer a unique composition. A diverse
range of planet interiors fits the measured planet properties. Nonetheless, GJ
1214b's relatively low average density (rho_p=1870+/-400 kg m^{-3}) means that
it almost certainly has a significant gas component. Our second major
conclusion is that under most conditions we consider GJ 1214b would not have
liquid water. Even if the outer envelope is predominantly sublimated water ice,
the envelope will likely consist of a super-fluid layer sandwiched between
vapor above and plasma (electrically conductive fluid) below at greater depths.
In our models, a low intrinsic planet luminosity (<~2TW) is needed for a water
envelope on GJ 1214b to pass through the liquid phase.Comment: 10 pages, 5 figures, published in Ap
- …