917 research outputs found
Residual tumor cells that drive disease relapse after chemotherapy do not have enhanced tumor initiating capacity.
Although chemotherapy is used to treat most advanced solid tumors, recurrent disease is still the major cause of cancer-related mortality. Cancer stem cells (CSCs) have been the focus of intense research in recent years because they provide a possible explanation for disease relapse. However, the precise role of CSCs in recurrent disease remains poorly understood and surprisingly little attention has been focused on studying the cells responsible for re-initiating tumor growth within the original host after chemotherapy treatment. We utilized both xenograft and genetically engineered mouse models of non-small cell lung cancer (NSCLC) to characterize the residual tumor cells that survive chemotherapy treatment and go on to cause tumor regrowth, which we refer to as tumor re-initiating cells (TRICs). We set out to determine whether TRICs display characteristics of CSCs, and whether assays used to define CSCs also provide an accurate readout of a cell's ability to cause tumor recurrence. We did not find consistent enrichment of CSC marker positive cells or enhanced tumor initiating potential in TRICs. However, TRICs from all models do appear to be in EMT, a state that has been linked to chemoresistance in numerous types of cancer. Thus, the standard CSC assays may not accurately reflect a cell's ability to drive disease recurrence
Trace element analysis provides insight into the diets of early Late Miocene ungulates from the Rudabánya II locality (Hungary)
The early Late Miocene vertebrate locality of Rudabánya II (R. II) in northeastern Hungary preserves an abundance of forest-adapted ungulate species. To better understand the ecological relationships within this ancient ecosystem, we used analysis of enamel strontium/calcium (Sr/Ca) ratios to infer dietary preferences. The goals of the analysis were to: i) determine whether these ungulate species specialized in specific plants or plant parts; ii) discern whether the Sr/Ca ratios support what was previously suggested about the ecology of these species; and iii) evaluate the factors that may have acted to promote coexistence within this diverse community of predominantly browsing herbivores. Results show significant differences in the diets of the sampled species. The highest Sr/Ca ratios were displayed by the suids Parachleuastochoerus kretzoii [B1] and Propotamochoerus palaeochoerus implying a preference for Sr-rich underground plant parts. Elevated Sr/Ca ratios yielded by the cervid Lucentia aff. pierensis and equid Hippotherium intrans are indicative of intermediate feeding. The bovid Miotragocerus sp. showed higher Sr/Ca ratios than the gomphothere Tetralophodon longirostris, which is incongruent with morphological and stable isotope data, and suggested browsing by both taxa. This finding is likely the result of a difference in digestive physiology (ruminant vs. monogastric) rather than a difference in dietary behaviour. The lowest Sr/Ca ratios were displayed by the traguild Dorcatherium naui and moschid Micromeryx flourensianussuggesting a preference for Sr-poor fruits. Resource specialization and partitioning within the local environment likely acted to decrease interspecific competition and promote coexistence within the diverse ungulate community at R. II
Creation of entangled states in coupled quantum dots via adiabatic rapid passage
Quantum state preparation through external control is fundamental to
established methods in quantum information processing and in studies of
dynamics. In this respect, excitons in semiconductor quantum dots (QDs) are of
particular interest since their coupling to light allows them to be driven into
a specified state using the coherent interaction with a tuned optical field
such as an external laser pulse. We propose a protocol, based on adiabatic
rapid passage, for the creation of entangled states in an ensemble of pairwise
coupled two-level systems, such as an ensemble of QD molecules. We show by
quantitative analysis using realistic parameters for semiconductor QDs that
this method is feasible where other approaches are unavailable. Furthermore,
this scheme can be generically transferred to some other physical systems
including circuit QED, nuclear and electron spins in solid-state environments,
and photonic coupled cavities.Comment: 10 pages, 2 figures. Added reference, minor changes. Discussion,
results and conclusions unchange
Modulated Floquet Topological Insulators
Floquet topological insulators are topological phases of matter generated by
the application of time-periodic perturbations on otherwise conventional
insulators. We demonstrate that spatial variations in the time-periodic
potential lead to localized quasi-stationary states in two-dimensional systems.
These states include one-dimensional interface modes at the nodes of the
external potential, and fractionalized excitations at vortices of the external
potential. We also propose a setup by which light can induce currents in these
systems. We explain these results by showing a close analogy to px+ipy
superconductors
Massive Dirac particles on the background of charged de-Sitter black hole manifolds
We consider the behavior of massive Dirac fields on the background of a
charged de-Sitter black hole. All black hole geometries are taken into account,
including the Reissner-Nordstr\"{o}m-de-Sitter one, the Nariai case and the
ultracold case. Our focus is at first on the existence of bound quantum
mechanical states for the Dirac Hamiltonian on the given backgrounds. In this
respect, we show that in all cases no bound state is allowed, which amounts
also to the non-existence of normalizable time-periodic solutions of the Dirac
equation. This quantum result is in contrast to classical physics, and it is
shown to hold true even for extremal cases. Furthermore, we shift our attention
on the very interesting problem of the quantum discharge of the black holes.
Following Damour-Deruelle-Ruffini approach, we show that the existence of
level-crossing between positive and negative continuous energy states is a
signal of the quantum instability leading to the discharge of the black hole,
and in the cases of the Nariai geometry and of the ultracold geometries we also
calculate in WKB approximation the transmission coefficient related to the
discharge process.Comment: 19 pages, 11 figures. Macro package: Revtex4. Changes concern mainly
the introduction and the final discussion in section VI; moreover, Appendix D
on the evaluation of the Nariai transmission integral has been added.
References adde
On mathematical models for Bose-Einstein condensates in optical lattices (expanded version)
Our aim is to analyze the various energy functionals appearing in the physics
literature and describing the behavior of a Bose-Einstein condensate in an
optical lattice. We want to justify the use of some reduced models. For that
purpose, we will use the semi-classical analysis developed for linear problems
related to the Schr\"odinger operator with periodic potential or multiple wells
potentials. We justify, in some asymptotic regimes, the reduction to low
dimensional problems and analyze the reduced problems
Spectral Analysis for Matrix Hamiltonian Operators
In this work, we study the spectral properties of matrix Hamiltonians
generated by linearizing the nonlinear Schr\"odinger equation about soliton
solutions. By a numerically assisted proof, we show that there are no embedded
eigenvalues for the three dimensional cubic equation. Though we focus on a
proof of the 3d cubic problem, this work presents a new algorithm for verifying
certain spectral properties needed to study soliton stability. Source code for
verification of our comptuations, and for further experimentation, are
available at http://www.math.toronto.edu/simpson/files/spec_prop_code.tgz.Comment: 57 pages, 22 figures, typos fixe
The Central Singularity in Spherical Collapse
The gravitational strength of the central singularity in spherically
symmetric space-times is investigated. Necessary conditions for the singularity
to be gravitationally weak are derived and it is shown that these are violated
in a wide variety of circumstances. These conditions allow conclusions to be
drawn about the nature of the singularity without having to integrate the
geodesic equations. In particular, any geodesic with a non-zero amount of
angular momentum which impinges on the singularity terminates in a strong
curvature singularity.Comment: 17 pages; revised and corrected with improved result
- …
