In this work, we study the spectral properties of matrix Hamiltonians
generated by linearizing the nonlinear Schr\"odinger equation about soliton
solutions. By a numerically assisted proof, we show that there are no embedded
eigenvalues for the three dimensional cubic equation. Though we focus on a
proof of the 3d cubic problem, this work presents a new algorithm for verifying
certain spectral properties needed to study soliton stability. Source code for
verification of our comptuations, and for further experimentation, are
available at http://www.math.toronto.edu/simpson/files/spec_prop_code.tgz.Comment: 57 pages, 22 figures, typos fixe