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Central singularity in spherical collapse
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The gravitational strength of the central singularity in spherically symmetric space-times is investigated.
Necessary conditions for the singularity to be gravitationally weak are derived and it is shown that these are
violated in a wide variety of circumstances. These conditions allow conclusions to be drawn about the nature
of the singularity without having to integrate the geodesic equations. In particular, any geodesic with a nonzero
amount of angular momentum that impinges on the singularity terminates in a strong curvature singularity.

PACS number~s!: 04.20.Dw, 04.20.Jb, 04.70.2s
th
er
-
th
a
o
i

g
ve
th
th
o
le

o

n
n
a
nd
-

os
n
t’s
ine

am

e

s

me
is

e
s

le

at
s a
ity

nd

ition
ns

ay
in

n
-
ers
g

on
ex-

ng
nct
I. INTRODUCTION

The theorems of Hawking, Penrose, and others predict
occurrence of space-time singularities in a variety of int
esting physical situations@1#. The singularities that have re
ceived the most attention over the last years are those
occur in gravitational collapse and the initial cosmologic
singularity. It seems fair to say that our understanding
these singularities remains at a preliminary stage; little
known about generic 4D collapse and correspondingly,
neric inhomogeneous cosmological singularities. Howe
much progress has been made on the understanding of
singularities under certain simplifying assumptions, e.g.,
assumption of spherical symmetry for black holes or of h
mogeneity for cosmological singularities. See, for examp
the reviews of@2# and @3#.

It is in this context that we analyze a particular feature
singularities, namely, their gravitational strength@4#, under
the simplifying assumption of spherical symmetry. This co
tinues the work initiated in@5#, but here we concentrate o
the central singularity. The notion of the gravitation
strength of a singularity was first introduced by Ellis a
Schmidt @6# with the aim of distinguishing between singu
larities that destroy objects impinging upon them and th
which do not. A formal mathematical definition was give
by Tipler, based on the familiar idea of modelling an objec
physical extension using Jacobi fields along its world-l
@4#. Thus letg:@ t0,0)→M ~with tangentka! be an incom-
plete causal geodesic running into a singularity as the par
eter t→02. We define the sets of Jacobi fieldsJt1

,t0<t1

,0 as follows:Jt1
5$ja:~i!,~ii !,~iii !%, where

~i! gabj
akb50;

~ii ! ja~ t1!50;

~iii ! D2ja1Rbcd
a kbkdjc50.

~Covariant differentiation alongg is represented byD.! Note
that the elements ofJt1

are spacelike vector fields, and so w

may refer to their norm,ijW i5(gabj
ajb)1/2. Given any three
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~for timelike geodesics; two for null! independent element
of Jt1

, a volume element alongg is constructed by taking the
exterior product of the corresponding 1-forms, and a volu
V by taking the norm of this 3-form. Then the singularity
said to be gravitationally strong if for all such volumesV, we
have

lim inf
t→02

V~ t !50.

According to Tipler’s definition, the singularity is said to b
gravitationally weak if this condition does not hold. Thu
any object with world-lineg will inevitably be crushed by a
gravitationally strong singularity. To emphasize the ro
played byg here, we will refer togeodesics terminatingin
strong or weak singularities.

As pointed out recently and independently by Nolan@5#
and by Ori@7#, this definition ignores some singularities th
would destroy objects impinging upon them and so need
brief addendum. First, the definition of a strong singular
ignores the case whereV diverges to infinity in the approach
to the singularity. Subject to the strong energy condition a
Einstein’s equation,V is a convex function oft, and so can-
not diverge in a finite amount of parameter time@8#. How-
ever, there are situations where the strong energy cond
is violated while the weak and dominant energy conditio
are satisfied. In such a case, convexity ofV is not guaranteed
and so one should allow for the possibility ofV diverging.
Second, as pointed out by Tipler, the volume form m
stretch infinitely in one direction while shrinking to zero
another in such a way that its normV remains finite overall.
Such a ‘‘spaghettifying’’ effect clearly signals the end of a
observer’s history.~An observer falling radially into the sin
gularity at the center of a Schwarzschild black hole suff
infinite stretching in the radial direction and infinite crushin
in the tangential directions. The net effect on his volumeV is
that it is crushed to zero. An explicit example of a situati
where the radial stretching and tangential crushing are
actly canceled when one calculatesV was given in@5#.! Such
situations should also be included in the definition of stro
singularities. This may be done in a logical and succi
fashion following Ori@7#: a singularity is said to bedefor-
mationally strongif it is either ~i! Tipler strong~i.e., strong
in the sense of the paragraphs preceding this one! or ~ii ! if for
everyt1 , there exists an element ofJt1

that has infinite norm
©2000 The American Physical Society15-1
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BRIEN C. NOLAN PHYSICAL REVIEW D 62 044015
in the limit t→02. A singularity is said to bedeformation-
ally weakif it is not deformationally strong.

Our aim is to give useful geometric conditions for th
occurrence of deformationally strong singularities. We foc
on a particular class of singularities; those which occur at
center of spherically symmetric space-times. Numer
analyses have predicted the occurrence of such singula
inside spherical black holes@9–15#, as a consequence o
gravitational collapse@16–20#, and in cosmological model
@21#. We exploit the available symmetry to develop a con
tion that is necessary for a singularity to be deformationa
weak. In conjunction with an existing necessary condit
for a singularity to be Tipler-weak@8#, we find very severe
restrictions on the existence of weak central singularities
fact it will be shown thatany nonradial causal geodesic tha
approaches r50 terminates in a deformationally strong cu
vature singularity. For radial causal geodesics and in partic
lar situations~e.g., assuming a particular matter distributi
or a spacelike singularity!, we can show that these restri
tions are violated, i.e., the singularity is deformationa
strong. In most cases, we present our necessary conditio
inequalities that must be satisfied along geodesics run
into the singularity. However, in many cases we can dr
conclusions without having to integrate the geodesic eq
tions. Thus strong curvature singularities can be predicte
the level of the curvature tensor rather than the geode
themselves.

In the following section, we study causal geodesics a
the volumeV along them in spherically symmetric spac
times. This allows us to give the result referred to above
nonradial geodesics and to present our main result on ra
geodesics in the form of necessary conditions for a cen
singularity to be deformationally weak. Applications are th
given and further comments are given in a concluding s
tion. We emphasize throughout the use of invariant qua
ties.

II. GEODESICS IN SPHERICAL SYMMETRY

We write the line element in double null form,

ds2522e22 fdudv1r 2dV2, ~2.1!

where f 5 f (u,v), dV2 is the line element of the uni
2-sphere, andr 5r (u,v) is the radius function of the space
time ~which is a geometric invariant!. u,v are null coordi-
nates and the form~2.1! is invariant up tov→v1(v),u
→u1(u). A singularity will be referred to ascentral if it
occurs atr 50. In the coordinates of Eq.~2.1!, the Ricci
tensor has nonvanishing components

Ruu522r 21~r ,uu12r ,uf ,u!, ~2.2a!

Rvv522r 21~r ,vv12r ,v f ,v!, ~2.2b!

Ruv522r 21~r ,uv2r f ,uv!, ~2.2c!

Ruu5csc2 uRff5112e2 f~r ,ur ,v1rr ,uv!. ~2.2d!
04401
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Insofar as it is possible, we will describe any curvature te
sor terms that we encounter using the following invarian
e2 fRuu ,e2 fRvv , the Misner-Sharp energy@22#

E5
r

2
~112e2 f r ,ur ,v!,

the Newman-Penrose Weyl tensor Coulomb component~cal-
culated on a principal null tetrad!

C25
e2 f

3r
~r ,uv1r f ,uv!2

E

3r 3 ,

and the Ricci scalarR. A useful feature ofE is that it offers
a simple description of the trapped and untrapped region
a spherically symmetric space-time; the pointxPM lies on a
trapped ~untrapped, marginally trapped! 2-sphere iffx51
22Er21 is negative~positive, zero! at x @23#.

Given an arbitrary geodesicg in spherical symmetry, the
coordinates of the 2-sphere~u,f! may be chosen such tha
the motion proceeds in the hypersurfaceu5p/2. Thus the
tangent to an arbitrary causal geodesic may be written a

kW5u̇
]

]u
1 v̇

]

]v
1Lr 22

]

]f
, ~2.3!

where we have included the conservation of angular mom
tum, r 2ḟ5L5const. The overdot indicates differentiatio
with respect to the parametert. The remaining geodesic
equations are

22e22 f u̇v̇1L2r 2252e, ~2.4a!

ü22 f ,uu̇21L2e2 f r 23r ,v50, ~2.4b!

v̈22 f ,vv̇21L2e2 f r 23r ,u50, ~2.4c!

wheree511 for timelike geodesics ande50 for null geo-
desics.

In a previous paper@5#, we studied radial causal geodesi
and were able to obtain a useful decomposition of the v
umeV. We found thatV5uaxyu, wherea is the norm of a
radial Jacobi field andx,y are the norms of two mutually
orthogonal tangential Jacobi fields along the geodesic.
key to obtaining this decomposition is the fact that any th
such Jacobi fields~which vanish att5t1! provide a basis for
Jt1

. This complete decomposition ofV is not available in the

general nonradial (LÞ0) case, but a useful part of it is. Thi
partial decomposition relies on the following facts.

As we will see, there is always a Jacobi field alongg of
the form

jW5xr21
]

]u
. ~2.5!

x(t) must satisfy a certain ordinary differential equatio
~ODE! alongg; see below. In the timelike case, the other tw
elements of a basis forJt1

must have nonzero components

the 2-space orthogonal to bothkW andjW , and indeed may be
5-2
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taken to lie in this 2-space. We consider two such basis
ments,hW and zW . Now introduce an orthonormal tetrad, pa
allel propagated alongg. An arbitrary tangent vectorlW or-
thogonal tokW will only have components on the three spat
vectors of the tetrad; let these components bel a, a51,2,3.
For three such vectors, the corresponding 1-forms satisf

i11∧12∧13i5det@ l 1
a ,l 2

a ,l 3
a#,

where the columns of the matrix are the tetrad compone
of the given vectors. For the case where thelW ( i ) are elements
of Jt1

, this matrix is a constant matrix multiple~which we
will call a transition matrixT! of the matrix

G5@ja,ha,za#.

By orthogonality, the volume associated withG is VG

5ijW i(ih∧zi). In the case of relevance to us, where thelW ( i )
areindependentelements ofJt1

, the transition matrix is non-

singular and so we obtain for theV of relevance,

V~ t !5det~T!VG .

The key point here is thatuxu5ijW i appears as a factor o
V(t), and so ifx(t) is degenerate~i.e., x→0 or `! in the
limit as the singularity is approached (t→02), then the sin-
gularity must be deformationally strong. A similar argume
holds in the null case.

We turn to the derivation of the equation satisfied byx(t)
in Eq. ~2.5!. It is easily verified that the vector fieldr 21]/]u
is parallel propagated alongg and has unit norm. Thus Eq
~2.5! satisfies the geodesic deviation equation iff

ẍdu
a52Rbud

a kbkdx. ~2.6!

We find that

Rbud
a kbkd5@2~2r 21r ,uf ,u1r 21r ,uu!u̇

2

2~2r 21r ,v f ,v1r 21r ,vv!v̇2

1sin2 u~112e2 f r ,ur ,v!ḟ222r 21r ,uvu̇v̇#du
a .

This term is controlled solely byr (t). The evolution ofr
along g is given by ṙ 5r ,uu̇1r ,vv̇. The second derivative
can be worked out and simplified with the use of the geo
sic equations, resulting in

r̈ 5~2r ,uf ,u1r ,uu!u̇
21~2r ,v f ,v1r ,vv!v̇2

22e2 f rr ,ur ,vḟ212r ,uvu̇v̇.

Comparing the last two equations alongg ~on which u
5p/2!, we see that Eq.~2.6! becomes

ẍ1S L2

r 42
r̈

r D x50. ~2.7!
04401
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The existence of the angular momentum term plays a v
role as we will see in the following section. We treat th
radial (L50) and nonradial (LÞ0) cases separately, dealin
with the latter first.

III. NONRADIAL GEODESICS

We may assume without loss of generality thatL.0. De-
fining y5r 21x, Eq. ~2.7! may be written in the self-adjoin
form

d

dt S r 2
dy

dt D1
L2

r 2 y50. ~3.1!

We can obtain the asymptotic behavior ofx in the limit as
the singularity is approached as follows. First, we move
singularity out to infinite parameter value. The origin a
temporal orientation of the affine parameter/proper timet has
been fixed so that the singularity atr 50 is approached ast
→02. We defines52t21, so that the singularity is ap
proached ass→1`. Defining R(s)5r (t), where r (t)
meansr (u,v)uu5u(t),v5v(t) , i.e., this indicates the depen
dence ofr on the parametert in the solution of the geodesi
equations, Eq.~3.1! becomes

~s2R2y8!81
L2

s2R2 y50, ~3.2!

where the prime denotes differentiation with respect tos.
Thus the equation is of the form

„p~s!y8…82q~s!y50. ~3.3!

We can use the Liouville-Green asymptotic formula to o
tain the leading-order behavior ofy and hencex as s→`.
We quote in full the following theorem, which appears
Theorem 2.2.1 of@24#.

Theorem 1. Let p andq be nowhere zero and have local
absolutely continuous first derivatives in an interval@a,`).
Let

~pq!8

pq
5oH S q

pD 1/2J ~s→`!, ~3.4!

and let

„p21/2q23/2~pq!8…8PL~a,`!, ~3.5!

Let Re@(q/p1w2)1/2# have one sign in@a,`) where w
5(pq)8/(4pq). Then Eq. ~3.3! has solutionsy1 ,y2 with
asymptotic behavior

y1,2;~pq!21/4expF6E
a

sS q

p
1w2D 1/2

ds̄G ~s→`!.

~3.6!

We now turn to the application of this theorem to E
~3.1!. We have here

p5s2R2, q52
L2

s2R2 .
5-3



te
s

o
d

at

on

re
n
a

in
r-

e
n
e
le
e
ed
m
te
d

ould
ef-

ad-
fu-

nt
.

the

s
or-

d.

nal
use
ness
or

by
tis-

re-

BRIEN C. NOLAN PHYSICAL REVIEW D 62 044015
Recall that we are working under the hypothesis thatR(s),
satisfying the geodesic equation, approachingR50 as s
→`. Thus there exists a reala such that neitherp nor q are
zero in the interval@a,`). We have

p852sR212s2R852t21r 212ṙ ,

q852L2~s23R221s22R24R8!52L2~ t3r 221t4r 24ṙ !.

The requirement that these functions be locally absolu
continuous on@a,`), i.e., that they be absolutely continuou
on compact subsets of@a,`), is very weak. This would fol-
low from local boundedness ofp8,q8, which itself will fol-
low from the assumption of the existence of the geodesic
the interval, i.e., from the fact thatṙ is defined and bounde
away from the singularity. Also,

pq52L2,

which is constant, and so conditions~3.4! and ~3.5! are au-
tomatically satisfied. Note also thatw50. Thus the hypoth-
eses of the theorem are satisfied and the conclusion~3.6!
yields ~on removing a constant unimodular factor!

y1,2;L21/2expS 6 i E
a

s L

s̄2R2~ s̄!
ds̄D .

Writing this in terms of the affine parameter/proper timet,
we obtain for the two real independent solutionsx1,2 of Eq.
~2.7!

x1~ t !;L21/2r ~ t !cosS E
e

t L

r 2~ t8!
dt8D , ~3.7!

x2~ t !;L21/2r ~ t !sinS E
e

t L

r 2~ t8!
dt8D . ~3.8!

Now let Ja(t)5x(t)r 21du
a be a Jacobi field that vanishes

some arbitrary timet1,0, i.e., x(t1)50. Sinceboth of the
independent solutionsx1,2 of Eq. ~2.7! approach zero ast
→02, we conclude that the particular linear combinati
that gives the presentx(t) will also approach zero in this
limit. Thus we see that in every case,x(t)→0 in the limit as
the singularity is approached. This proves the following
sult, which we note is independent of any energy conditio

Proposition 1. Let g be a nonradial causal geodesic in
spherically symmetric space-time~M,g!. If g runs into the
centerr 50 in finite parameter time, either in the past or
the future, theng terminates in a deformationally strong cu
vature singularity.

Thus any singularity, naked or covered, which is reach
by a nonradial causal geodesic is deformationally stro
These geodesics have not been widely studied and des
some attention. It would be of interest to know, for examp
if those space-times that admit radial geodesics with past
points on a central singularity—i.e., which admit nak
singularities—also admit nonradial geodesics with the sa
or indeed if there are nonradial geodesics whose futures
minate at the past end points of the naked singularity geo
04401
ly

n

-
s.

d
g.
rve
,
nd

e,
r-

e-

sics. If such geodesics exist, then these singularities sh
be considered genuine; their existence has a destructive
fect on certain observers in the space-time. We hope to
dress the question of the existence of such geodesics in
ture work. A useful starting point would be the invaria
equation for the evolution ofr along the geodesic, i.e., Eq
~4.3! below.

IV. RADIAL GEODESICS

In the radial case, the angular momentum termL vanishes
and Eq.~2.7! reads

rẍ2 r̈ x50. ~4.1!

The unique solution~modulo an irrelevant constant factor! of
this equation satisfyingx(t1)50 is

x~ t !5r ~ t !E
t1

t ds

r 2~s!
. ~4.2!

Notice then that if the singularity is noncentral,x(02) is
nonzero and finite. For a central singularity, we have
following @5#.

Lemma 1. Let

I 5E
t1

0 ds

r 2~s!
.

~i! If the integralI converges, thenx→0 ast→02.
~ii ! If I diverges, then

lim
t→02

x~ t !5 lim
t→02

2
1

ṙ
~ t !.

This is a straight application of l’Hopital’s rule. From thi
and the comments above, we have the following useful c
ollaries.

Corollary 1. If a radial causal geodesicg terminates in a
deformationally weak central singularity, then alongg,
limt→02 ṙ (t) is nonzero and finite.

Corollary 2. Let the conditions of Corollary 1 be satisfie
Then there existsc0.0 such that

r ~ t !;c0utu as t→02.

This yields a useful necessary condition for deformatio
weakness of the singularities under consideration. We
Corollary 1 above and some established results on weak
of singularities@8# to derive a new necessary condition f
deformational weakness of central singularities reached
radial geodesics. This condition seems unlikely to be sa
fied in many circumstances. We require the following p
liminary basic results.

Lemma 2. Let aPC(0,b# for someb.0. Suppose that

E
0

r

a~s!ds
5-4
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CENTRAL SINGULARITY IN SPHERICAL COLLAPSE PHYSICAL REVIEW D62 044015
converges for allr P(0,e)(b.e.0). Then limr→0 ra(r )
50.

Proof. Let r be fixed and defineb on @0,r # by

b~x!5E
x

r

a~s!ds.

Then bPC@0,r #ùC1(0,r #. By Taylor’s theorem, for every
xP@0,r #, there is anr 1P(x,r ) such that

b~x!5b~r !1b8~r 1!~x2r !5~r 2x!a~r 1!.

In particular,

H~r !ªE
0

r

a~s!ds5b~0!5ra~r * !

for somer * P(0,r ). By hypothesis,H(r ) exists and is finite
for all sufficiently smallr. Thus

05 lim
r→0

uH~r !u5 lim
r→0

ura~r * !u> lim
r→0

ur * a~r * !u

5 lim
r
*

→0
ur * a~r * !u>0.

Replacingr * by r in the last line gives the required result
Lemma 3. Let r (t) satisfy the differential equation

r̈ 5a~r !

on ~0,b# where aPC(0,b# for some b.0. Suppose tha
limt→0 r (t)50 and that limt→0 ṙ exists and is finite. Then
limr→0 ra(r )50.

Proof. For sufficiently smallr and fort.0, we may inte-
grate the differential equation to obtain

ṙ 2~ t !52E
r 0

r

a~r 8!dr81 ṙ 2~ t0!,

wherer (t0)5r 0<b. Then by hypotheses,

E
r 0

0

a~s!ds5 lim
r→0

E
r 0

r

a~r 8!dr85 1
2 lim

t→0
@ ṙ 2~ t !2 ṙ 2~ t0!#

exists and is finite. Now apply Lemma 2 to obtain the res
Next, we recall a result of Clarke and Krolak~a direct

consequence of their Corollary 3@8#!. For this we note that if
a singularity is deformationally weak, then it is Tipler-wea
Note that this result assumes the strong energy condition
Einstein’s equation~or equivalently, the timelike and nul
convergence conditions!.

Lemma 4. If a causal geodesicg terminates in a deforma
tionally weak singularity, then alongg,

lim
t→02

t2R4450,

whereR44ªRabk
akb.

In order to use Lemma 3, we note the following. We ha
ṙ 5r ,uu̇1r ,vv̇. Differentiating again, using the geodes
equations~2.4! and grouping terms appropriately, we get t
04401
t.

nd

following form for r̈ ~for generality, we include angular mo
mentum in the following expression!:

r 21r̈ 52
1

2
R441eS E

r 3 12C22
R

12D1L2r 22S 1

r 2 13C2D .

~4.3!

The right-hand side is to be viewed as a function of t
parametert ~i.e., it is assumed that the geodesic equations
solved!, which is smooth for 0,utu,d for somed and sin-
gular att50. ~The degree of smoothness is not particula
significant; continuity is sufficient. However there is ve
little restriction in assuming a higher degree of different
bility for utu.0; we are interested in singularities occurrin
at t50.! In the present situation, Corollary 2 applies and
we can use the inverse function theorem to write the rig
hand side of Eq.~4.3! as a function ofr which is continuous
on ~0,b# for some positiveb. Thus Lemma 3 applies.

Combining Lemma 4 with Corollaries 1 and 2, we obta
our main result.

Proposition 2. If a radial causal geodesicg terminates in a
deformationally weak central singularity, then alongg

lim
r→0

r 2R445 lim
r→0

r r̈ 50.

The usefulness of the result comes from the fact that
the one hand we have two independent conditions that m
be satisfied by weak central singularities, and on the ot
the parametert does not appear explicitly in the releva
quantities. These features are emphasized by using Eq.~4.3!
and the following equation forR44:

R445Ruuu̇
21Rvvv̇212eS E

r 3 1C22
R

6 D
14L2r 22S E

r 3 1C22
R

24D . ~4.4!

An immediate consequence of Eqs.~4.4! and ~4.3! and
Proposition 2 is the following.

Corollary 3. If a radial causal geodesicg terminates in a
deformationally weak central singularity, then alongg

lim
r→0

er 2S E

r 3 12C22
R

12D50. ~4.5!

Notice that this result is vacuous for radial null geodesi
this is a consequence of the fact that these are principal
directions in spherical symmetry. On the other hand, we
that the strength of the singularity approached by a ra
null geodesic is completely controlled by the behavior ofR44
in the limit as the singularity is approached. Indeed we c
give the following result.

Corollary 4. A radial null geodesic that reachesr 50 in
finite parameter time terminates in a deformationally we
singularity if and only if there existse.0 such thatrR44 is
integrable as a function ofr on @0,e#.

Proof. In the radial case, the volume element along
geodesic is a constant multiple ofx2, wherex satisfies Eq.
5-5
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BRIEN C. NOLAN PHYSICAL REVIEW D 62 044015
~4.2!. This follows from the fact that the second Jacobi fie
may be chosen to bey(t)r 21 cscudf

a , with y also satisfying
Eq. ~4.2!. See@5#. Thus by Lemma 1, the singularity is de
formationally weak if and only ifṙ is finite in the limit as the
singularity is approached. But using Eq.~4.3!, we can write

ṙ 252E
r 0

r

r 8R44~r 8!dr81 ṙ 2~ t0!,

where r 05r (t0). The result follows immediately from this
integral.

This result shows that the converse of Lemma 4~with t
replaced byr! is true for radial null geodesics. This may b
useful as this lemma has been used widely in studies o
dial null geodesics emanating from central singularities; s
e.g., @17,18#. We now have the useful converse, that if t
condition used to demonstrate deformational strength of
singularity fails, then the singularity is necessarily deform
tionally weak.

In the following section, we analyze the condition
r 2R44→0 andr r̈ →0 subject to various assumptions. In se
eral cases, we show how deformationally strong central
gularities may be identified without having to integrate t
geodesic equations.

V. APPLICATIONS

In this section, we assume the following situation obtai
there exists a radial timelike geodesicg that runs intor 50 in
a finite amount of parameter time. Then the origin of t
parametert along the geodesic may be translated so t
r (0)50. We set aside the issue of the existence of s
geodesics.

We assume that the dominant and strong energy co
tions are satisfied by the energy-momentum tensor of
space-time and that Einstein’s equation holds. The domin
energy condition states thatTb

al b is past-directed and caus
for any future-directed timelikel a. Then in particular
Tabl

al b>0 for all causall a. We choose units so that Ein
stein’s equation isGab58pTab . Given this equation, the
strong energy condition is equivalent toRabl

al b>0 for all
causall a. In particular, the dominant energy condition yiel
the following inequalities:

Ruu>0, Rvv>0,

z2
ª

E

r 3 1C21
R

12
>0.

The approach we take here is to derive general res
about the strength of the singularity without integrating
ther field equations or geodesic equations. We will try
derive general results based on certain geometric assu
tions, and otherwise, restrict to particular matter models
this case, we will focus on two important and widely studi
cases; a scalar field in a source free electric field, an
perfect fluid. In the former case, the Ricci tensor is given
04401
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Rab52¹af¹bf1
Q2

r 4 Eab , ~5.1!

wheref is the scalar field,Q is the constant electric charge
Eab52gab12r 2sab , andsab is the standard metric on th
unit 2-sphere. We haveR52gab¹af¹bf and

E

r 3 1C21
R

12
5

Q2

2r 4 . ~5.2!

We note that the dominant and strong energy conditions
automatically satisfied by this matter distribution. The ne
tral case can be studied by settingQ50. Burko @15# has
shown that under the assumption of spatial homogeneity,
central singularity in this model is deformationally strong

For a perfect fluid with flow vectorua, energy densityr,
and pressurep, we have

~8p!21Rab5~r1p!uaub1 1
2 ~r2p!gab , ~5.3!

R58p~r23p!, ~5.4!

E

r 3 1C25
4pr

3
. ~5.5!

The dominant energy condition requiresr1p>0, r2p>0.
We now proceed to investigate the consequences

Proposition 2 and Corollary 3 under the following case
Unless otherwise stated, we make no assumptions abou
matter distribution, other than that the dominant and stro
energy conditions are satisfied. Throughout the remainde
this section, asymptotic relations, limiting values, etc. re
to the limit asr→0 along a geodesic that terminates in
deformationally weak singularity.

For radial timelike geodesics,L50, e51 and so the con-
clusion of Corollary 3 is that, along a radial geodesic term
nating in a deformationally weak central singularity,

r 2S E

r 3 12C22
R

12D→0. ~5.6!

For convenience, we give

R445Ruuu̇
21Rvvv̇212S E

r 3 1C22
R

6 D ,

r 21r̈ 52
1

2
R441S E

r 3 12C22
R

12D .

It is difficult to make any general statements without ma
ing further assumptions. However Eq.~5.6! may prove to be
a useful condition to use to check the strength of cert
singularities. We can make some progress in the case w

E

r 3 1C22
R

6
>0. ~5.7!

Then in addition to Eq.~5.6!, we must have
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r 2S E

r 3 1C22
R

6 D→0.

We can write these as~any two of!

r 2S z22
R

4 D→0, r 2S z22
E

r 3D→0, r 2~z213C2!→0.

If any one ofE<0 or R<0 or C2>0 holds, then these
give

r 2C2 ,
E

r
,r 2R→0

as conditions that must hold at a weak singularity. Not
then that the singularity must be untrapped~122E/r→1
.0 as the singularity is approached!. That is, we have the
following.

Corollary 5. If a radial timelike geodesicg terminates in a
deformationally weak central singularity and if the inequal
~5.7! and at least one of the inequalities

E<0, R<0, C2>0

hold in the limit as the singularity is approached, then
singularity is untrapped.

It is worthwhile investigating the consequences of E
~5.7! for the two matter models mentioned above. For a s
lar field in an electric field, this is equivalent to

Q2

r 4 <gab¹af¹bf,

which may be described as the case where the electric
dominates the scalar field. Then we conclude that

gab¹af¹bf5
Q2

r 4 1o~r 22!,

E

r
5

Q2

2r 2 1o~1!,

C252
Q2

6r 4 1o~r 22!.

Notice that the singularity must be naked. This should
considered in conjunction with the result of@15#, where evi-
dence is presented that in this case, the singularity mus
timelike but that the evolution tends to avoid this situati
~i.e., the scalar field dominates!. For the case of a neutra
scalar field (Q50), Eq. ~5.7! becomes

gab¹af¹bf<0.

SettingQ50 in the previous trio of equations, we see that
this case the singularity is untrapped.

For a perfect fluid Eq.~5.7! reads

p>0,
04401
e

e

.
-

ld

e

be

and for a deformationally weak central singularity subject
this condition, we conclude that

r 2p→0, 2pr5
E

r 3 1o~r 22!. ~5.8!

Ori and Piran@17# considered self-similar collapse of
perfect fluid with a barotropic equation of state~which must
necessarily be of the formp5gr, g constant!. Every such
space-time includes a central singularity atr 50,t50 wheret
is an orthogonal time coordinate, fixed by demanding tha
measures proper time of an observer at the regular ce
This point is referred to as the origin. It is found thatr 2r
5D(x) wherex5r /t is the similarity variable. Thus by Eq
~5.8! ~which applies if 0<k, 1

3 !, a radial timelike geodesic
running into the origin terminates in a deformationally stro
singularity provided limD(x)Þ0 along the geodesic. Th
existence of such geodesics is readily demonstrated using
results of@17#. The corresponding result for outgoing radi
null geodesics was proven by Ori and Piran; this includes
interesting case of future-pointing outgoing radial null ge
desics originating at the singularity, i.e., the case of a na
singularity. The present result shows that these singular
will destroy an observer impinging upon them. Deformatio
ally strong spacelike singularities have also been detecte
the gravitational collapse of a perfect fluid~with and without
an electric field! under the assumption of spatial quasihom
geneity@25#.

Recall from above that the present case~5.7! includes
dust. The analysis that follows gives a nontrivial example
the demonstration of the deformational strength of a sin
larity that does not rely on solving the geodesic equatio
Thus we investigate the latter condition in Eq.~5.8!, i.e.,

r 2S 2pr2
E

r 3D→0.

For the case of marginally bound dust, we have

4pr5
E8

r 2r 8
,

where the prime denotes differentiation with respect to a s
tial coordinatex that labels points in the slices orthogonal
the fluid flow. The Einstein equations in this case yieldE
5E(x) and

r 3~x,t!5 9
2 E@t0~x!2t#2,

where the fluid flow vector isua52¹at. See@16,18# for
details. There is freedom in the choice of the coordinatx
that allowsx→X(x). This may be utilized by takingr 5x on
the initial slicet50. This choice has the advantage of spe
fying t0(x):

t0~x!53A2/Ex3/2.
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The central singularity in this model appears att5t0(x);
that singularity for which we also havex50 is of interest for
studies of cosmic censorship. Jhingan and Joshi argue
the appropriate form forE is

E~x!5 (
n50

`

Enxn13,

where theEn are constants.~E is not required to be analytic
and this is not supposed to be implied by the form above
what follows, all we require is thatE;E0x3,x→0 and that
e
th

e
e
e
ti

l
u

cu
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rm

th
th

e
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04401
at

n

this relation is differentiable atx50. This form forE is the
most general that ensures a finite, nonsingular initial state
the matter.! With this assumption, a straightforward calcul
tion gives

r 2S 4pr2e
E

r 3D5
EE8~t02t!24t08E

2

E8r ~t02t!12t08Er
.

This quantity definitely diverges at a central singularityr
5(t02t)50,xÞ0; such a singularity must be deformatio
ally strong. In the caser 5(t02t)5x50, we have
r 2S 4pr22
E

r 3D;

3E0x21
4

3&
E0

7/2E1
21

35/3221/3E0
1/3~t02t!5/32221/6321/3E0

17/6E1
21x~t02t!2/3.
ten
le

he
ck
l
Eq.

n of
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er-
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at in

the
and
Again, this quantity~generically! diverges, giving a strong
curvature singularity. We emphasise that it was not nec
sary to integrate the geodesic equations in order to reach
conclusion.

VI. CONCLUSIONS

We have exploited the symmetry properties of causal g
desics in spherically symmetric space-times to study the
fect of a central singularity on an observer who imping
upon it. We have been able to demonstrate the destruc
effect ~deformational strength! of the singularity in severa
cases, and have given very finely tuned conditions that m
hold in order that this destruction need not occur. In parti
lar, any nonradial geodesic approaching a central singula
must terminate in a deformationally strong central singu
ity. This may be understood as follows. The focusing te
R44 will include the termRffḟ2, which by the conservation
of angular momentum equalsL2Rffr 24. This introduces
strong curvature along the geodesic, which contributes to
destructive effect. Of course this does not include
vacuum case, and so we conclude that the angular mom
tum must also cause a significant amount of shear to dev
along the geodesic, which, via the Raychaudhuri equat
contributes to the strong focussing effect.

The main advantage of our approach was that it did
require the integration of the geodesic equations; it was p
sible to predict the deformational strength~or weakness! of
certain singularities by calculating the Riemann tensor ra
than its tetrad components@8#. Of course one needs to ad
dress the issue of the existence of geodesics that run into
s-
is

o-
f-
s
ve

st
-
ty
-

e
e
n-

op
n,

t
s-

er

he

singularity~i.e., the question of theexistenceof the singular-
ity! in the situations studied above. However, this can of
be donewithout having to obtain the detailed and subt
information required to apply the results of@8# ~see, for ex-
ample,@26# for a thorough application of these results to t
null weak Cauchy horizon singularity in spherical bla
holes!. For example, ifz250 is satisfied along a causa
geodesic—as is the case for a neutral scalar field—then
~4.3! reads

r r̈ 52
r 2

2
~Ruuu̇

21Rvvv̇2!2e
E

r
1

L2

r 2 S 123
E

r D .

In a trapped region,2E/r ,2 1
2 , and sor̈ ,0. Assuming the

absence of singularities away fromr 50, this is sufficient to
ensure that the geodesic runs into the center. IfLÞ0, this
will be a deformationally strong singularity.

The analysis here was made possible by the assumptio
spherical symmetry. One would expect similar results
space-times with hyperbolic and plane symmetry. It may a
be possible to extend the applicability of the idea of det
mining the nature of singularities from simple geomet
quantities to more general situations, e.g., axially symme
space-times or homogeneous cosmologies. We note th
this vein, significant progress has been made recently on
issue of the connection between a well-behaved metric
weak singularities@27#.
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