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Central singularity in spherical collapse
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The gravitational strength of the central singularity in spherically symmetric space-times is investigated.
Necessary conditions for the singularity to be gravitationally weak are derived and it is shown that these are
violated in a wide variety of circumstances. These conditions allow conclusions to be drawn about the nature
of the singularity without having to integrate the geodesic equations. In particular, any geodesic with a nonzero
amount of angular momentum that impinges on the singularity terminates in a strong curvature singularity.

PACS numbg(s): 04.20.Dw, 04.20.Jb, 04.78s

[. INTRODUCTION (for timelike geodesics; two for nylindependent elements
of Ji, @ volume element alongis constructed by taking the

The theorems of Hawking, Penrose, and others predict thgxterior product of the corresponding 1-forms, and a volume
occurrence of space-time Slngularltles In a variety of inter-y/ by tak|ng the norm of this 3-form. Then the singu|arity is

esting physical situatiorfsl]. The singularities that have re- sajid to be gravitationally strong if for all such voluméswe
ceived the most attention over the last years are those thahye

occur in gravitational collapse and the initial cosmological

singularity. It seems fair to say that our understanding of liminf V(t)=0.

these singularities remains at a preliminary stage; little is {0

known about generic 4D collapse and correspondingly, ge-

neric inhomogeneous cosmological singularities. HoweveAccording to Tipler's definition, the singularity is said to be
much progress has been made on the understanding of thegeavitationally weak if this condition does not hold. Thus
singularities under certain simplifying assumptions, e.g., theany object with world-liney will inevitably be crushed by a
assumption of spherical symmetry for black holes or of ho-gravitationally strong singularity. To emphasize the role
mogeneity for cosmological singularities. See, for exampleplayed byy here, we will refer togeodesics terminatinm
the reviews of 2] and[3]. strong or weak singularities.

It is in this context that we analyze a particular feature of ~As pointed out recently and independently by No[&h
singularities, namely, their gravitational strendi, under and by Ori[7], this definition ignores some singularities that
the simplifying assumption of spherical symmetry. This con-would destroy objects impinging upon them and so needs a
tinues the work initiated ih5], but here we concentrate on brief addendum. First, the definition of a strong singularity
the central singularity. The notion of the gravitational ignores the case whekédiverges to infinity in the approach
strength of a singularity was first introduced by Ellis andto the singularity. Subject to the strong energy condition and
Schmidt[6] with the aim of distinguishing between singu- Einstein’s equationy is a convex function of, and so can-
larities that destroy objects impinging upon them and thoseot diverge in a finite amount of parameter tifri8J. How-
which do not. A formal mathematical definition was given ever, there are situations where the strong energy condition
by Tipler, based on the familiar idea of modelling an object'sis violated while the weak and dominant energy conditions
physical extension using Jacobi fields along its world-lineare satisfied. In such a case, convexitya not guaranteed
[4]. Thus lety:[ty,00—M (with tangentk®) be an incom- and so one should allow for the possibility Wf diverging.
plete causal geodesic running into a singularity as the paransecond, as pointed out by Tipler, the volume form may
etert—0". We define the sets of Jacobi fieldsl,t0$t1 stretch infinitely in one direction while shrinking to zero in

<0 as fo||0WS;Jtl={§a;(i),(ii),(iii)}, where another in such a way that its norvhremains finite overall.
Such a “spaghettifying” effect clearly signals the end of an
(i) gapc®kP=0; observer’s history(An observer falling radially into the sin-
gularity at the center of a Schwarzschild black hole suffers
(i) €3(t;)=0; infinite stretching in the radial direction and infinite crushing

in the tangential directions. The net effect on his volwhis
that it is crushed to zero. An explicit example of a situation
where the radial stretching and tangential crushing are ex-
actly canceled when one calculatésvas given in5].) Such
situations should also be included in the definition of strong
singularities. This may be done in a logical and succinct
may refer to their normi| €| = (gapt2£°) Y2 Given any three fashion following Ori[7]: a singularity is said to belefor-
mationally strongif it is either (i) Tipler strong(i.e., strong
in the sense of the paragraphs preceding thig ongi) if for
*Email address: nolanb@ccmail.dcu.ie everyt,, there exists an element dg‘l that has infinite norm

(i) D22+ R3, KPkIgc=0.

(Covariant differentiation along is represented bip.) Note
that the elements af; are spacelike vector fields, and so we
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in the limit t—0~. A singularity is said to beleformation-  Insofar as it is possible, we will describe any curvature ten-
ally weakif it is not deformationally strong. sor terms that we encounter using the following invariants:
Our aim is to give useful geometric conditions for the e?'R,,,e?'R,,, the Misner-Sharp enerd?2]
occurrence of deformationally strong singularities. We focus
on a particular class of singularities; those which occur at the
center of spherically symmetric space-times. Numerous
analyses have predicted the occurrence of such singularities
inside spherical black holeg9—15), as a consequence of the Newman-Penrose Weyl tensor Coulomb compof(eait
gravitational collaps¢16—20, and in cosmological models culated on a principal null tetrad
[21]. We exploit the available symmetry to develop a condi- o
tion that is necessary for a singularity to be deformationally s :e—(r +rf )
weak. In conjunction with an existing necessary condition 27 g W L
for a singularity to be Tipler-weaf8], we find very severe o _ )
restrictions on the existence of weak central singularities. Ind the Ricci scalaR. A useful feature ok is that it offers
fact it will be shown thatny nonradial causal geodesic that @ Simple description of the trapped and untrapped regions of
approaches 0 terminates in a deformationally strong cur- @ Spherically symmetric space-time; the poirtM lies on a
vature singularity For radial causal geodesics and in particu-trapped (untrapped, marginally trapped-sphere iff=1
lar situations(e.g., assuming a particular matter distribution —2Er~* is negative(positive, zerp at x [23].
or a spacelike singularity we can show that these restric- ~ Given an arbitrary geodesig in spherical symmetry, the
tions are violated, i.e., the singularity is deformationally coordinates of the 2-sphef@,¢) may be chosen such that
strong. In most cases, we present our necessary conditions # motion proceeds in the hypersurfage w/2. Thus the
inequalities that must be satisfied along geodesics runninfgngent to an arbitrary causal geodesic may be written as
into the singularity. However, in many cases we can draw

_r 2 f
E= §(1+2e ral o)

ETEN

conclusions without having to integrate the geodesic equa- k= ui+i;i+Lr‘zi 2.3
tions. Thus strong curvature singularities can be predicted at Ju dv g’
the level of the curvature tensor rather than the geodesics

themselves. where we have included the conservation of angular momen-

In the following section, we study causal geodesics andum, r?¢=L=const. The overdot indicates differentiation
the volumeV along them in spherically symmetric space- With respect to the parametér The remaining geodesic
times. This allows us to give the result referred to above foequations are
nonradial geodesics and to present our main result on radial

geodesics in the form of necessary conditions for a central —2e ?fup+Lr %=~ (2.43
singularity to be deformationally weak. Applications are then . o o of 3

given and further comments are given in a concluding sec- a—2f,0°+L%"'r°r ,=0, (2.4b
tion. We emphasize throughout the use of invariant quanti- )

ties. p—2f 02 +L%* "t %r =0, (2.49

wheree= +1 for timelike geodesics ane=0 for null geo-
Il. GEODESICS IN SPHERICAL SYMMETRY desics.

In a previous papdgi5], we studied radial causal geodesics
and were able to obtain a useful decomposition of the vol-
umeV. We found thatV=|axy|, wherea is the norm of a
radial Jacobi field anc,y are the norms of two mutually
orthogonal tangential Jacobi fields along the geodesic. The
key to obtaining this decomposition is the fact that any three
such Jacobi fieldéwvhich vanish at=t,) provide a basis for
Ji, This complete decomposition dfis not available in the
general nonradiall(# 0) case, but a useful part of it is. This

partial decomposition relies on the following facts.
As we will see, there is always a Jacobi field alopof

We write the line element in double null form,
ds?’=—2e ?'dudy +r2dQ?, (2.2

where f=f(u,v), dQ? is the line element of the unit
2-sphere, and=r(u,v) is the radius function of the space-
time (which is a geometric invariantu,v are null coordi-
nates and the form2.1) is invariant up tov—uv4(v),u
—uq(u). A singularity will be referred to asentral if it
occurs atr=0. In the coordinates of Eq2.1), the Ricci
tensor has nonvanishing components

the form

Ruu=—2r "X(r yu+2r of u), (2.2a A P
§=xr*1£. (2.5

Ryp=—2r"Y(r ,,+2r f ), (2.2b

x(t) must satisfy a certain ordinary differential equation
Ruy=—2r r y,—rf ), (2.20 (ODE) alongy; see below. In the timelike case, the other two

' ' elements of a basis fQTtl must have nonzero components in

Ryy=CsC OR,=1+ 2e2f(r'ur'v+rryuU). (2.2d  the 2-space orthogonal to bokhand £, and indeed may be
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taken to lie in this 2-space. We consider two such basis eleFhe existence of the angular momentum term plays a vital

mentsyﬁ and Z Now introduce an orthonormal tetrad, par- role as we will see in the fO“OWing section. We treat the
allel propagated along. An arbitrary tangent vector or-  'adial (L=0) and nonradiall +0) cases separately, dealing

> . with the latter first.
thogonal tok will only have components on the three spatial
vectors of the tetrad; let these componentsi bea:1,2,3. .. NONRADIAL GEODESICS
For three such vectors, the corresponding 1-forms satisfy

We may assume without loss of generality that0. De-

11,021,015/ =def 115,157, fining y=r " x, Eq. (2.7) may be written in the self-adjoint
form
where the columns of the matrix are the tetrad components 5
of the given vectors. For the case where Ehgare elements i rzﬂ + L =0 3.1
. o . . . —y=0. (3.1
of J;, this matrix is a constant matrix multiplgvhich we dt\" dt) r

will call a transition matrixT) of the matrix We can obtain the asymptotic behavior>ofn the limit as

o a v the singularity is approached as follows. First, we move the
=& 7% singularity out to infinite parameter value. The origin and
) ) o temporal orientation of the affine parameter/proper tirhas
By orthogonality, the volume associated wilh is Vi peen fixed so that the singularity &0 is approached as

=] &l( 70¢]). In the case of relevance to us, where the ~ —.0~. We defines=—t"1, so that the singularity is ap-
areindependenelements ofl; , the transition matrix is non-  proached ass— +. Defining R(s)=r(t), where r(t)

singular and so we obtain for thé of relevance, meansr(u,v)|u:u(t),uzvm, i.e., this indicates the depen-
dence ofr on the parameterin the solution of the geodesic
V(t)=de(T)Vr. equations, Eq(3.1) becomes
. . > L2
The key point here is thdix|= appears as a factor of 2027\’ =
yp dix|=[|¢] app (SRY) + oy =0, (3.2

V(t), and so ifx(t) is degeneratéi.e., x—0 or «) in the
limit as the singularity is approachet-¢0"), then the sin-
gularity must be deformationally strong. A similar argument
holds in the null case.

We turn to the derivation of the equation satisfiedxift) (p(s)y’) —q(s)y=0. (3.3
in Eq.(2.5). It is easily verified that the vector field 19/96
is parallel propagated alongand has unit norm. Thus Eq. We can use the Liouville-Green asymptotic formula to ob-

where the prime denotes differentiation with respectsto
Thus the equation is of the form

(2.5) satisfies the geodesic deviation equation iff tain the leading-order behavior gfand hencex as s— .
We quote in full the following theorem, which appears as
%69=— R ;qkPkx. (2.6)  Theorem 2.2.1 of24].
Theorem 1Let p andg be nowhere zero and have locally
We find that absolutely continuous first derivatives in an interjalo°).
Let
R2 ,gKPKI=[—(2r "Ir ,f ,+1 71 )02 '
bad [—@2r Ty f ytr T )i (pg) . q 1/2 o) -
—(2r Y f T )02 Pq p ’ .
+sir? 0(1+2e2r yr ) p2—2r I, un]85. and let
—1/2—3/2 Y
This term is controlled solely by(t). The evolution ofr (P~ " (pa)") eL(a,2), (3.9

along vy is given byr=r yu+r ,vo. The second derivative
can be worked out and simplified with the use of the geode
sic equations, resulting in

Let Rd(a/p+wA)Y?] have one sign in[a,~) where w
=(pqg)'/(4pq). Then Eg.(3.3) has solutionsy;,y, with
asymptotic behavior

F=(2r ,f o1 U2+ (2r ,f ,+r1 )02

s/ 1/2
. y1,2~(pq)‘”“exr{tf 5+w2 d% (5—0).
—2e2frr yr  d%+2r U0, a
u ,u¢ ,up YU 3.6

Comparing the last two equations along(on which ¢ We now turn to the application of this theorem to Eq.
=7/2), we see that Eq2.6) becomes (3.1). We have here

a |—2 r -0 2 2R2 L2

AT E 2.7 pP=s'R% 4=~ 2ga-
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Recall that we are working under the hypothesis R&), sics. If such geodesics exist, then these singularities should
satisfying the geodesic equation, approachRg0 ass  be considered genuine; their existence has a destructive ef-
—oo, Thus there exists a realsuch that neithep norq are  fect on certain observers in the space-time. We hope to ad-

zero in the interval a,»). We have dress the question of the existence of such geodesics in fu-
ture work. A useful starting point would be the invariant
p’'=2sRP+2s?R' =2t 1r2+2r, equation for the evolution of along the geodesic, i.e., Eq.
(4.3) below.

q'=2L3%(s *R™2+s?RR)=2L2(t3% "2+t ).
The requirement that these functions be locally absolutely IV. RADIAL GEODESICS
continuous orja,*), i.e., that they be absolutely continuous  In the radial case, the angular momentum térranishes
on compact subsets p&, =), is very weak. This would fol- and Eq.(2.7) reads
low from local boundedness @ ,q’, which itself will fol-

low from the assumption of the existence of the geodesic on rx—ix=0. 4.1

the interval, i.e., from the fact thatis defined and bounded

away from the singularity. Also, The unique solutiofimodulo an irrelevant constant factaf

this equation satisfying(t;)=0 is
pg=—L?

t

which is constant, and so conditiof3.4) and (3.5 are au- X('I)=F(t)ft s (4.2)
1

tomatically satisfied. Note also thet=0. Thus the hypoth-
eses of the theorem are satisfied and the concluSd)

yields (on removing a constant unimodular faotor Notice then that if the singularity is noncentral(0™) is

nonzero and finite. For a central singularity, we have the

= +'F L following [5].
Y12~ exp =i . % s|. Lemma 1Let
0
Writing this in terms of the affine parameter/proper titne |:f 2d_s
we obtain for the two real independent solutions of Eq. ty 1°(S)

(2.7

(i) If the integrall converges, them—0 ast—0".

xl(t)~L‘1/2r(t)cos( J’t r—z%dt')- @7 (i) If 1 diverges, then

1
lim x(t)= lim — —(t).
X (t)“l-_llzr(t)sm( ft Ldt’) (3.9 -0~ o=
2 . rZ(t/) . .

This is a straight application of I'Hopital’s rule. From this
Now let J3(t)=x(t)r ~153 be a Jacobi field that vanishes at and the comments above, we have the following useful cor-

some arbitrary time;<O0, i.e., x(t;)=0. Sinceboth of the  Ollaries. _ _ _ _
independent solutions, , of Eq. (2.7) approach zero as Corollary 1 If a radial causal geodesigterminates in a
—0°, we conclude that the particular linear combinationdeformationally weak central singularity, then along
that gives the present(t) will also approach zero in this liMi.o—7(t) is nonzero and finite. N
limit. Thus we see that in every casd})— 0 in the limit as Corollary 2. _Let the conditions of Corollary 1 be satisfied.
the singularity is approached. This proves the following re-Then there existsy>0 such that
sult, which we note is independent of any energy conditions. B

Proposition 1 Let y be a nonradial causal geodesic in a r(h~coltf as t—0".

spherically symmetric space-tim@l,g). If y runs into the o . _
centerr =0 in finite parameter time, either in the past or in 1 NiS yields a useful necessary condition for deformational
the future, theny terminates in a deformationally strong cur- weakness of the singularities undgr consideration. We use
vature singularity. Corollary 1 above and some established results on weakness

Thus any singularity, naked or covered, which is reache®f singularities[8] to derive a new necessary condition for

by a nonradial causal geodesic is deformationally Stronggieformational weakness of central singularities reached by

These geodesics have not been widely studied and deser{@dial geodesics. This condition seems unlikely to be satis-
some attention. It would be of interest to know, for example fi€d in many circumstances. We require the following pre-
if those space-times that admit radial geodesics with past edininary basic results.

points on a central singularity—i.e., which admit naked Lemma 2Letae C(0b] for someb>0. Suppose that
singularities—also admit nonradial geodesics with the same,

or indeed if there are nonradial geodesics whose futures ter- fra(s)ds

minate at the past end points of the naked singularity geode- 0
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converges for allr e (0,6)(b>e€>0). Then lim_gra(r)
=0.
Proof. Letr be fixed and defingg on [0, ] by

ﬂ(x)zfxra(s)ds.

Then Be C[0r]NCY(0r]. By Taylor's theorem, for every
xe[0r], there is arrq e (X,r) such that

BX)=pB(r)+ B (r)(X—r)=(r=x)a(ry).
In particular,

H(r>==fra<s>ds=ﬁ<0>=ra<r*>

0

for somer, € (0y). By hypothesisH(r) exists and is finite
for all sufficiently smallr. Thus

O=Ilim|H(r)|=lim|ra(r,)|=lim|r* a(r,)|
r—0 r—0 r—0

= lim |r, a(r,)|=0.

re—0

Replacingr, by r in the last line gives the required result.
Lemma 3 Let r(t) satisfy the differential equation

f=a(r)

on (0,b] where ae C(0b] for some b>0. Suppose that
lim,_or(t)=0 and that lin_ ot exists and is finite. Then
lim,_qora(r)=0.

Proof. For sufficiently smalr and fort>0, we may inte-
grate the differential equation to obtain

r
rz(t)=2f a(r)dr +%(t),
"o
wherer (tg) =ro=<b. Then by hypotheses,
0 r
f a(s)ds= Iimj a(r’ydr’=3lim[i2(t)—?(ty)]
"o

r—07To t—0

exists and is finite. Now apply Lemma 2 to obtain the result.

Next, we recall a result of Clarke and Kroldk direct
consequence of their Corollary[8]). For this we note that if

a singularity is deformationally weak, then it is Tipler-weak.
Note that this result assumes the strong energy condition ary

Einstein’s equationor equivalently, the timelike and null
convergence conditiohs

Lemma 4If a causal geodesig terminates in a deforma-
tionally weak singularity, then along,

I|m t2R44: 0,
t—0"

whereR 44:= Rypk?kP.

PHYSICAL REVIEW D62 044015

following form for ¥ (for generality, we include angular mo-
mentum in the following expressign

1. 1
r:__R44+E

+272
5 Ler

r

1
23T, ).
4.3

E oy R
AR

The right-hand side is to be viewed as a function of the
parametet (i.e., it is assumed that the geodesic equations are
solved, which is smooth for &|t|< § for someés and sin-
gular att=0. (The degree of smoothness is not particularly
significant; continuity is sufficient. However there is very
little restriction in assuming a higher degree of differentia-
bility for |t|>0; we are interested in singularities occurring
att=0.) In the present situation, Corollary 2 applies and so
we can use the inverse function theorem to write the right-
hand side of Eq(4.3) as a function of which is continuous
on (0,b] for some positiven. Thus Lemma 3 applies.

Combining Lemma 4 with Corollaries 1 and 2, we obtain
our main result.

Proposition 2 If a radial causal geodesicterminates in a
deformationally weak central singularity, then alopg

limr?Ry,=limri =0.
r—0 r—0

The usefulness of the result comes from the fact that on
the one hand we have two independent conditions that must
be satisfied by weak central singularities, and on the other,
the parametet does not appear explicitly in the relevant
guantities. These features are emphasized by using4Es).
and the following equation foR,,:

, , E R
Ru= R, U2+ R,,0%+2€ PR P

R

+4L%r 2 —. )
4L%r 54 (4.4

E
r_3+’\1,2_

An immediate consequence of Edg.4) and (4.3) and
Proposition 2 is the following.

Corollary 3. If a radial causal geodesigterminates in a
deformationally weak central singularity, then alopg

lim er? =0.

r—o0

E
|’_3+2\P2_

1 4.5

Vaotice that this result is vacuous for radial null geodesics;
is is a consequence of the fact that these are principal null
directions in spherical symmetry. On the other hand, we see
that the strength of the singularity approached by a radial
null geodesic is completely controlled by the behavioRgf
in the limit as the singularity is approached. Indeed we can
give the following result.

Corollary 4. A radial null geodesic that reaches-0 in
finite parameter time terminates in a deformationally weak
singularity if and only if there existe>0 such thatRy, is

In order to use Lemma 3, we note the following. We haveintegrable as a function afon [0,€].

r=r  u+r 0. Differentiating again, using the geodesic

Proof. In the radial case, the volume element along the

equationg2.4) and grouping terms appropriately, we get thegeodesic is a constant multiple »f, wherex satisfies Eq.
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(4.2). This follows from the fact that the second Jacobi field Q?

may be chosen to bg(t)r ~* cschs’, with y also satisfying Rap=2Va¢Vud+ 7 Eap, (5.9

Eq. (4.2). See[5]. Thus by Lemma 1, the singularity is de-

formationally weak if and only if is finite in the limit as the  \yhere ¢ is the scalar fieldQ is the constant electric charge,

singularity is approached. But using E¢.3), we can write g_ = —g_, +2r2s,,, ands,, is the standard metric on the
unit 2-sphere. We havR=2g?"V ¢V, ¢ and

r
'r2=—f [ Raa(1 )1 +72(t), E R Q
o = (5-2)

wherery=r(ty). The result follows immediately from this
integral.
This result shows that the converse of Lemméwdth t

We note that the dominant and strong energy conditions are
automatically satisfied by this matter distribution. The neu-

replaced byr) is true for radial null geodesics. This may be tral case can be studied by .Sem@:o' .Burko [15] ha}s
useful as this lemma has been used widely in studies of ras—hOWn that under the assumption of spatial homogeneity, the

dial null geodesics emanating from central singularities; se central singularity i.n this model is deformationally strong.
' " For a perfect fluid with flow vecton?, energy density,

e.g.,[17,18. We now have the useful converse, that if the
condition used to demonstrate deformational strength of th@lnd pressure, we have
singularity fails, then the singularity is necessarily deforma-
tionally weak.

In the following section, we analyze the conditions

(87) 'Rap=(p+P)Ualp+3(p—P)Gap, (5.3

r?R,,—0 andri —0 subject to various assumptions. In sev- R=8m(p=3p), 6.4
eral cases, we show how deformationally strong central sin- E Amp
gularities may be identified without having to integrate the —+W,= = (5.5

geodesic equations. r

The dominant energy condition requires- p=0, p—p=0.
V. APPLICATIONS We now proceed to investigate the consequences of
In this section, we assume the following situation obtains:Erc;pos't'or:l 2 and Corgllary 3 uknder the following %ases.h
there exists a radial timelike geodesithat runs inta =0 in nless otherwise stated, we make no assumptions about the
matter distribution, other than that the dominant and strong

a finite amount of parameter time. Then the origin of the - - :
parametert along the geodesic may be translated so thafNe"9y conditions are satisfied. Throughout the remainder of

r(0)=0. We set aside the issue of the existence of sucII1h'S section, asymptotic relations, "”_“““9 vaIues, ete. FEfef
geodesics. to the limit asr—0 along a geodesic that terminates in a

We assume that the dominant and strong energy condfiéformationally weak singularity.
tions are satisfied by the energy-momentum tensor of the FOr radial timelike geodesict,=0, =1 and so the con-
space-time and that Einstein’s equation holds. The dominarfusion of Corollary 3 is that, along a radial geodesic termi-
energy condition states thiﬁlb is past-directed and causal nating in a deformationally weak central singularity,
for any future-directed timelikel?. Then in particular
Tapl21P=0 for all causall®. We choose units so that Ein- r2
stein’s equation iG,,=87T,,. Given this equation, the
strong energy condition is equivalent Ry,|2°=0 for all
causal?. In particular, the dominant energy condition yields
the following inequalities:

12

E R
r—3+2\1f2—— —0. (5.6
For convenience, we give

Ru=R, U2+ R,,0%+2

E-I—‘I' R
Pt

Yo IRyt S2w,- X
E3 R rr= aat| 3 27 o)

+W,+ —=0. 2

It is difficult to make any general statements without mak-

The approach we take here is to derive general result§g further assumptions. However E&.6) may prove to be
about the strength of the singularity without integrating ei-a useful condition to use to check the strength of certain
ther field equations or geodesic equations. We will try tosingularities. We can make some progress in the case where
derive general results based on certain geometric assump-
tions, and otherwise, restrict to particular matter models. In E L E>0 5.7
this case, we will focus on two important and widely studied r3 2 6 '
cases; a scalar field in a source free electric field, and a
perfect fluid. In the former case, the Ricci tensor is given byThen in addition to Eq(5.6), we must have
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. E R and for a deformationally weak central singularity subject to
r (34"1’2— 3 —0. this condition, we conclude that

We can write these a@&ny two of 5 E 72
rp—0, 277p=r—3+o(r ). (5.8

r2

R E
22_2 —0, r?z2——=|—0, r3z?+3¥,)—0.
r Ori and Piran[17] considered self-similar collapse of a

perfect fluid with a barotropic equation of statehich must
necessarily be of the formp=yp, v constant Every such
space-time includes a central singularity &0,t=0 wheret

E is an orthogonal time coordinate, fixed by demanding that it
r2w,, — r’R—0 measures proper time of an observer at the regular center.
2 r ]

This point is referred to as the origin. It is found thé&p
- ; : =D (X) wherex=r/t is the similarity variable. Thus by Eg.

as conditions that must hold at a weak singularity. Notice ; S T .
then that the singularity must be untrapp(alg—ZE/Xel (5.8 (which applies if 0<k<3), a radial timelike geodesic

-0 the sinqularity i dhat is, h th rl_,mning _into the_origin_terminates inadeformational_ly strong
foIIO\;avisng e singularity is approachiedhat is, we have the singularity provided linD(x)#0 along the geodesic. The

Corollary 5. If a radial timelike geodesig terminates in a existence of such geodesics is_readily demonstratgd usin_g the
deformationally weak central singularity and if the inequality results of{17]. The corresponding result for outgoing radial

If any one of E<0 or R<0 or ¥,=0 holds, then these
give

(5.7) and at least one of the inequalities null geodesics was proven by Ori and Piran; this includes the
' interesting case of future-pointing outgoing radial null geo-
E<0, R<0, ¥,=0 desics originating at the singularity, i.e., the case of a naked

singularity. The present result shows that these singularities
hold in the limit as the singularity is approached, then thewill destroy an observer impinging upon them. Deformation-
singularity is untrapped. ally strong spacelike singularities have also been detected in
It is worthwhile investigating the consequences of Eg.the gravitational collapse of a perfect fluidith and without
(5.7) for the two matter models mentioned above. For a scaan electric fielgl under the assumption of spatial quasihomo-
lar field in an electric field, this is equivalent to geneity[25].
Recall from above that the present case7) includes
ab dust. The analysis that follows gives a nontrivial example of
r—4$g VapVpb, the demonstration of the deformational strength of a singu-
larity that does not rely on solving the geodesic equations.
which may be described as the case where the electric fielhus we investigate the latter condition in E§.8), i.e.,
dominates the scalar field. Then we conclude that

2

2 r2
G Vo= ol ),

E
2mp— 3 —0.

For the case of marginally bound dust, we have

E 2
—:%4—0(1),
r r A - E’
2 TP= r2|./!
\I’ZZ—W-"O(I'_Z).

where the prime denotes differentiation with respect to a spa-
Notice that the singularity must be naked. This should béial coordinatex that labels points in the slices orthogonal to
considered in conjunction with the result[dfs], where evi-  the fluid flow. The Einstein equations in this case yiéld
dence is presented that in this case, the singularity must be E(x) and
timelike but that the evolution tends to avoid this situation
(i.e., the scalar field dominatesFor the case of a neutral r3(x,7)=SE[ mo(x) — 7%,
scalar field Q=0), Eq.(5.7) becomes

where the fluid flow vector isi,=—V, 7. See[16,1§ for
details. There is freedom in the choice of the coordinate

. . : : . . _that allowsx— X(x). This may be utilized by taking=x on
SettingQ=0 in the previous trio of equations, we see that in - LY . . -
this case the singularity is untrapped. the initial slicer=0. This choice has the advantage of speci

For a perfect fluid Eq(5.7) reads fying 7o(X):

9%V 1V, =<0.

p=0, To(X)=3V2/EX%2,
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The central singularity in this model appears7at 7o(x); this relation is differentiable at=0. This form forE is the
that singularity for which we also have=0 is of interest for  most general that ensures a finite, nonsingular initial state for

studies of cosmic censorship. Jhingan and Joshi argue th@e matten. With this assumption, a straightforward calcula-
the appropriate form foE is tion gives

rz( E): EE'(ro— 1) —47yE?

4mp—e .
TPTEE E'r(mo—7)+27Er

E(x)= 2 Ex"*3,
n=0
where theE,, are constantgE is not required to be analytic This quantity definitely diverges at a central singularnity
and this is not supposed to be implied by the form above. In=(7,— 7) =0x+0; such a singularity must be deformation-
what follows, all we require is thaE~Ex3,x—0 and that ally strong. In the case=(7o— 7)=x=0, we have

4
3Ex?+ > EJE !

E
rz( Amp—2 r_B) ~ 35/32_1’3Eé/3( To— 7)5/3_ 2—1/63—1/3E(1J7/6E1—1X(7_0_ 7)2/3-

Again, this quantity(generically diverges, giving a strong singularity(i.e., the question of thexistenceof the singular-
curvature singularity. We emphasise that it was not necesty) in the situations studied above. However, this can often
sary to integrate the geodesic equations in order to reach thize donewithout having to obtain the detailed and subtle
conclusion. information required to apply the results [@] (see, for ex-
ample,[26] for a thorough application of these results to the
VI. CONCLUSIONS null weak Cauchy horizon singularity in spherical black
holeg. For example, ifz>=0 is satisfied along a causal

We have exploited the symmetry properties of causal geggeodesic—as is the case for a neutral scalar field—then Eq.
desics in spherically symmetric space-times to study the e (4.3 reads

fect of a central singularity on an observer who impinges

upon it. We have been able to demonstrate the destructive ) r? - = E L2
effect (deformational strengjhof the singularity in several f=—5 (RyU™+R,0) e+ 7
cases, and have given very finely tuned conditions that must

hold in order that this destruction need not occur. In particuy, 5 trapped region- E/r < — %, and sof <0. Assuming the

lar, any nonradial geodesic approaching a central singularitypsence of singularities away fram 0, this is sufficient to

must terminate in a deformationally strong central singularonsyre that the geodesic runs into the centet. #0, this

ity. This may be understood as follows. The focusing termi pe a deformationally strong singularity.

Raq Will include the termR ,,¢?, which by the conservation  The analysis here was made possible by the assumption of

of angular momentum equals®’R,4r ~*. This introduces spherical symmetry. One would expect similar results in

strong curvature along the geodesic, which contributes to thepace-times with hyperbolic and plane symmetry. It may also

destructive effect. Of course this does not include thepe possible to extend the applicability of the idea of deter-

vacuum case, and so we conclude that the angular momermining the nature of singularities from simple geometric

tum must also cause a significant amount of shear to develoguantities to more general situations, e.g., axially symmetric

along the geodesic, which, via the Raychaudhuri equatiorspace-times or homogeneous cosmologies. We note that in

contributes to the strong focussing effect. this vein, significant progress has been made recently on the
The main advantage of our approach was that it did nofssue of the connection between a well-behaved metric and

require the integration of the geodesic equations; it was poswveak singularitie$27].

sible to predict the deformational strendthr weaknessof

certain singularities by calculating the Riemann tensor rather ACKNOWLEDGMENT

than its tetrad componenf8]. Of course one needs to ad-

dress the issue of the existence of geodesics that run into the | am grateful to Amos Ori for helpful discussions.
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