1,601 research outputs found
On the total curvatures of a tame function
Given a definable function f, enough differentiable, we study the continuity
of the total curvature function t --> K(t), total curvature of the level {f=t},
and the total absolute curvature function t-->|K| (t), total absolute curvature
of the level {f=t}. We show they admits at most finitely many discontinuities
Adaptive density estimation for stationary processes
We propose an algorithm to estimate the common density  of a stationary
process . We suppose that the process is either  or
-mixing. We provide a model selection procedure based on a generalization
of Mallows'  and we prove oracle inequalities for the selected estimator
under a few prior assumptions on the collection of models and on the mixing
coefficients. We prove that our estimator is adaptive over a class of Besov
spaces, namely, we prove that it achieves the same rates of convergence as in
the i.i.d framework
Spin degree of freedom in two dimensional exciton condensates
We present a theoretical analysis of a spin-dependent multicomponent
condensate in two dimensions. The case of a condensate of resonantly
photoexcited excitons having two different spin orientations is studied in
detail. The energy and the chemical potentials of this system depend strongly
on the spin polarization . When electrons and holes are located in two
different planes, the condensate can be either totally spin polarized or spin
unpolarized, a property that is measurable. The phase diagram in terms of the
total density and electron-hole separation is discussed.Comment: 4 pages, 3 figures, Accepted for publication in Physical Review
  Letter
On small time asymptotics for rough differential equations driven by fractional Brownian motions
We survey existing results concerning the study in small times of the density
of the solution of a rough differential equation driven by fractional Brownian
motions. We also slightly improve existing results and discuss some possible
applications to mathematical finance.Comment: This is a survey paper, submitted to proceedings in the memory of
  Peter Laurenc
Spin noise spectroscopy to probe quantum states of ultracold fermionic atomic gases
Ultracold alkali atoms provide experimentally accessible model systems for
probing quantum states that manifest themselves at the macroscopic scale.
Recent experimental realizations of superfluidity in dilute gases of ultracold
fermionic (half-integer spin) atoms offer exciting opportunities to directly
test theoretical models of related many-body fermion systems that are
inaccessible to experimental manipulation, such as neutron stars and
quark-gluon plasmas. However, the microscopic interactions between fermions are
potentially quite complex, and experiments in ultracold gases to date cannot
clearly distinguish between the qualitatively different microscopic models that
have been proposed. Here, we theoretically demonstrate that optical
measurements of electron spin noise -- the intrinsic, random fluctuations of
spin -- can probe the entangled quantum states of ultracold fermionic atomic
gases and unambiguously reveal the detailed nature of the interatomic
interactions. We show that different models predict different sets of
resonances in the noise spectrum, and once the correct effective interatomic
interaction model is identified, the line-shapes of the spin noise can be used
to constrain this model. Further, experimental measurements of spin noise in
classical (Boltzmann) alkali vapors are used to estimate the expected signal
magnitudes for spin noise measurements in ultracold atom systems and to show
that these measurements are feasible
Study of ortho-to-paraexciton conversion in CuO by excitonic Lyman spectroscopy
Using time-resolved - excitonic Lyman spectroscopy, we study the
orthoexciton-to-paraexcitons transfer, following the creation of a high density
population of ultracold  orthoexcitons by resonant two-photon excitation
with femtosecond pulses.
  An observed fast exciton-density dependent conversion rate is attributed to
spin exchange between pairs of orthoexcitons.
  Implication of these results on the feasibility of BEC of paraexcitons in
CuO is discussed
Crustal seismicity and subduction morphology around Antofagasta, Chile : preliminary results from a microearthquake survey
Fluctuations in the Irreversible Decay of Turbulent Energy
A fluctuation law of the energy in freely-decaying, homogeneous and isotropic
turbulence is derived within standard closure hypotheses for 3D incompressible
flow. In particular, a fluctuation-dissipation relation is derived which
relates the strength of a stochastic backscatter term in the energy decay
equation to the mean of the energy dissipation rate. The theory is based on the
so-called ``effective action'' of the energy history and illustrates a
Rayleigh-Ritz method recently developed to evaluate the effective action
approximately within probability density-function (PDF) closures. These
effective actions generalize the Onsager-Machlup action of nonequilibrium
statistical mechanics to turbulent flow. They yield detailed, concrete
predictions for fluctuations, such as multi-time correlation functions of
arbitrary order, which cannot be obtained by direct PDF methods. They also
characterize the mean histories by a variational principle.Comment: 26 pages, Latex Version 2.09, plus seceq.sty, a stylefile for
  sequential numbering of equations by section. This version includes new
  discussion of the physical interpretation of the formal Rayleigh-Ritz
  approximation. The title is also change
The VIPERS Multi-Lambda Survey. II. Diving with massive galaxies in 22 square degrees since z = 1.5
We investigate the evolution of the galaxy stellar mass function (SMF) and
stellar mass density from redshift z=0.2 to z=1.5 of a <22-selected
sample with highly reliable photometric redshifts and over an unprecedentedly
large area. Our study is based on NIR observations carried out with WIRCam at
CFHT over the footprint of the VIPERS spectroscopic survey and benefits from
the high quality optical photometry from the CFHTLS and UV observations with
the GALEX satellite. The accuracy of our photometric redshifts is  <
0.03 and 0.05 for the bright (22.5) samples,
respectively. The SMF is measured with ~760,000 galaxies down to =22 and
over an effective area of ~22.4 deg, the latter of which drastically
reduces the statistical uncertainties (i.e. Poissonian error & cosmic
variance). We point out the importance of a careful control of the photometric
calibration, whose impact becomes quickly dominant when statistical
uncertainties are reduced, which will be a major issue for future generation of
cosmological surveys with, e.g. EUCLID or LSST. By exploring the rest-frame
(NUV-r) vs (r-) color-color diagram separating star-forming and quiescent
galaxies, (1) we find that the density of very massive log() >
11.5 galaxies is largely dominated by quiescent galaxies and increases by a
factor 2 from z~1 to z~0.2, which allows for additional mass assembly via dry
mergers, (2) we confirm a scenario where star formation activity is impeded
above a stellar mass log() = 10.640.01, a value that
is found to be very stable at 0.2 < z < 1.5, (3) we discuss the existence of a
main quenching channel that is followed by massive star-forming galaxies, and
finally (4) we characterise another quenching mechanism required to explain the
clear excess of low-mass quiescent galaxies observed at low redshift.Comment: 22 pages, 20 figures. Accepted for publication in A&A. Version to be
  publishe
Effects of density imbalance on the BCS-BEC crossover in semiconductor electron-hole bilayers
We study the occurrence of excitonic superfluidity in electron-hole bilayers
at zero temperature. We not only identify the crossover in the phase diagram
from the BCS limit of overlapping pairs to the BEC limit of non-overlapping
tightly-bound pairs but also, by varying the electron and hole densities
independently, we can analyze a number of phases that occur mainly in the
crossover region. With different electron and hole effective masses, the phase
diagram is asymmetric with respect to excess electron or hole densities. We
propose as the criterion for the onset of superfluidity, the jump of the
electron and hole chemical potentials when their densities cross.Comment: 4 pages, 3 figure
- …
