231 research outputs found

    Enriching a protein drink with leucine augments muscle protein synthesis after resistance exercise in young and older men

    Get PDF
    Maximizing anabolic responses to feeding and exercise is crucial for muscle maintenance and adaptation to exercise training. We hypothesized that enriching a protein drink with leucine would improve anabolic responses to resistance exercise (RE: 6×8 knee-extension repetitions at 75% of 1-RM) in both young and older adults. Groups (n=9) of young (24±6 y, BMI 23±2kg.m-2) and older men (70±5 y, BMI 25±2 kg.m-2) were randomized to either: (i) RE followed by Slim-Fast Optima (SFO 10 g PRO; 24 g CHO) with 4.2 g of leucine (LEU) or, (ii) RE+SFO with 4.2 g of alanine (ALA; isonitrogenous control). Muscle biopsies were taken before, immediately after, and 1, 2 and 4 h after RE and feeding. Muscle protein synthesis (MPS) was measured by incorporation of [1, 2-13C2] leucine into myofibrillar proteins and the phosphorylation of p70S6K1 by immunoblotting. In young men, both area under the curve (AUC; FSR 0-4 h P<0.05) and peak FSR (0.11 vs. 0.08%.h.-1; P<0.05) were greater in the SFO+LEU than in the SFO+ALA group, after RE. Similarly, in older men, AUC analysis revealed that post-exercise anabolic responses were greater in the SFO+LEU than SFO+ALA group, after RE (AUC; FSR 0-4 h P<0.05). Irrespective of age, increases in p70S6K1 phosphorylation were evident in response to both SFO+LEU and SFO+ALA, although greater with leucine supplementation than alanine (fold-change 2.2 vs. 3.2; P<0.05), specifically in the older men. We conclude that addition of Leucine to a sub-maximal PRO bolus improves anabolic responses to RE in young and older men

    Spin–orbit precession for eccentric black hole binaries at first order in the mass ratio

    Get PDF
    We consider spin–orbit ('geodetic') precession for a compact binary in strong-field gravity. Specifically, we compute ψ, the ratio of the accumulated spin-precession and orbital angles over one radial period, for a spinning compact body of mass m 1 and spin s 1, with s1Gm12/c{{s}_{1}}\ll Gm_{1}^{2}/c , orbiting a non-rotating black hole. We show that ψ can be computed for eccentric orbits in both the gravitational self-force and post-Newtonian frameworks, and that the results appear to be consistent. We present a post-Newtonian expansion for ψ at next-to-next-to-leading order, and a Lorenz-gauge gravitational self-force calculation for ψ at first order in the mass ratio. The latter provides new numerical data in the strong-field regime to inform the effective one-body model of the gravitational two-body problem. We conclude that ψ complements the Detweiler redshift z as a key invariant quantity characterizing eccentric orbits in the gravitational two-body problem

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Nutrient Administration and Resistance Training

    Get PDF
    Skeletal muscle tissue is tightly regulated throughout our bodies by balancing its synthesis and breakdown. Many factors are known to exist that cause profound changes on the overall status of skeletal muscle, some of which include exercise, nutrition, hormonal influences and disease. Muscle hypertrophy results when protein synthesis is greater than protein breakdown. Resistance training is a popular form of exercise that has been shown to increase muscular strength and muscular hypertrophy. In general, resistance training causes a stimulation of protein synthesis as well as an increase in protein breakdown, resulting in a negative balance of protein. Providing nutrients, specifically amino acids, helps to stimulate protein synthesis and improve the overall net balance of protein. Strategies to increase the concentration and availability of amino acids after resistance exercise are of great interest and have been shown to effectively increase overall protein synthesis. [1-3] After exercise, providing carbohydrate has been shown to mildly stimulate protein synthesis while addition of free amino acids prior to and after exercise, specifically essential amino acids, causes a rapid pronounced increase in protein synthesis as well as protein balance.[1,3] Evidence exists for a dose-response relationship of infused amino acids while no specific regimen exists for optimal dosing upon ingestion. Ingestion of whole or intact protein sources (e.g., protein powders, meal-replacements) has been shown to cause similar improvements in protein balance after resistance exercise when compared to free amino acid supplements. Future research should seek to determine optimal dosing of ingested intact amino acids in addition to identifying the cellular mechanistic machinery (e.g. transcriptional and translational mechanisms) for causing the increase in protein synthesis

    Skeletal Muscle Myofibrillar and Sarcoplasmic Protein Synthesis Rates Are Affected Differently by Altitude-Induced Hypoxia in Native Lowlanders

    Get PDF
    As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O2. With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-13C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7–9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041±0.018 at sea-level to 0.080±0.018%⋅hr−1 (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052±0.019 at sea-level to 0.059±0.010%⋅hr−1 (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51±0.21 at sea level to 2.73±0.13 µmol⋅kg−1⋅min−1 (p = 0.05) at high altitude and synthesis rate similar; 2.24±0.20 at sea level and 2.43±0.13 µmol⋅kg−1⋅min−1 (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure

    Differences in Muscle Protein Synthesis and Anabolic Signaling in the Postabsorptive State and in Response to Food in 65–80 Year Old Men and Women

    Get PDF
    Women have less muscle than men but lose it more slowly during aging. To discover potential underlying mechanism(s) for this we evaluated the muscle protein synthesis process in postabsorptive conditions and during feeding in twenty-nine 65–80 year old men (n = 13) and women (n = 16). We discovered that the basal concentration of phosphorylated eEF2Thr56 was ∼40% less (P<0.05) and the basal rate of MPS was ∼30% greater (P = 0.02) in women than in men; the basal concentrations of muscle phosphorylated AktThr308, p70s6kThr389, eIF4ESer209, and eIF4E-BP1Thr37/46 were not different between the sexes. Feeding increased (P<0.05) AktThr308 and p70s6kThr389 phosphorylation to the same extent in men and women but increased (P<0.05) the phosphorylation of eIF4ESer209 and eIF4E-BP1Thr37/46 in men only. Accordingly, feeding increased MPS in men (P<0.01) but not in women. The postabsorptive muscle mRNA concentrations for myoD and myostatin were not different between sexes; feeding doubled myoD mRNA (P<0.05) and halved that of myostatin (P<0.05) in both sexes. Thus, there is sexual dimorphism in MPS and its control in older adults; a greater basal rate of MPS, operating over most of the day may partially explain the slower loss of muscle in older women

    Differences in Muscle Protein Synthesis and Anabolic Signaling in the Postabsorptive State and in Response to Food in 65–80 Year Old Men and Women

    Get PDF
    Women have less muscle than men but lose it more slowly during aging. To discover potential underlying mechanism(s) for this we evaluated the muscle protein synthesis process in postabsorptive conditions and during feeding in twenty-nine 65–80 year old men (n = 13) and women (n = 16). We discovered that the basal concentration of phosphorylated eEF2Thr56 was ∼40% less (P<0.05) and the basal rate of MPS was ∼30% greater (P = 0.02) in women than in men; the basal concentrations of muscle phosphorylated AktThr308, p70s6kThr389, eIF4ESer209, and eIF4E-BP1Thr37/46 were not different between the sexes. Feeding increased (P<0.05) AktThr308 and p70s6kThr389 phosphorylation to the same extent in men and women but increased (P<0.05) the phosphorylation of eIF4ESer209 and eIF4E-BP1Thr37/46 in men only. Accordingly, feeding increased MPS in men (P<0.01) but not in women. The postabsorptive muscle mRNA concentrations for myoD and myostatin were not different between sexes; feeding doubled myoD mRNA (P<0.05) and halved that of myostatin (P<0.05) in both sexes. Thus, there is sexual dimorphism in MPS and its control in older adults; a greater basal rate of MPS, operating over most of the day may partially explain the slower loss of muscle in older women
    corecore