1,977 research outputs found

    Grifonin-1: A Small HIV-1 Entry Inhibitor Derived from the Algal Lectin, Griffithsin

    Get PDF
    Background: Griffithsin, a 121-residue protein isolated from a red algal Griffithsia sp., binds high mannose N-linked glycans of virus surface glycoproteins with extremely high affinity, a property that allows it to prevent the entry of primary isolates and laboratory strains of T- and M-tropic HIV-1. We used the sequence of a portion of griffithsin's sequence as a design template to create smaller peptides with antiviral and carbohydrate-binding properties. Methodology/Results: The new peptides derived from a trio of homologous β-sheet repeats that comprise the motifs responsible for its biological activity. Our most active antiviral peptide, grifonin-1 (GRFN-1), had an EC50 of 190.8±11.0 nM in in vitro TZM-bl assays and an EC50 of 546.6±66.1 nM in p24gag antigen release assays. GRFN-1 showed considerable structural plasticity, assuming different conformations in solvents that differed in polarity and hydrophobicity. Higher concentrations of GRFN-1 formed oligomers, based on intermolecular β-sheet interactions. Like its parent protein, GRFN-1 bound viral glycoproteins gp41 and gp120 via the N-linked glycans on their surface. Conclusion: Its substantial antiviral activity and low toxicity in vitro suggest that GRFN-1 and/or its derivatives may have therapeutic potential as topical and/or systemic agents directed against HIV-1

    Microbial ligand costimulation drives neutrophilic steroid-refractory asthma

    Get PDF
    Funding: The authors thank the Wellcome Trust (102705) and the Universities of Aberdeen and Cape Town for funding. This research was also supported, in part, by National Institutes of Health GM53522 and GM083016 to DLW. KF and BNL are funded by the Fonds Wetenschappelijk Onderzoek, BNL is the recipient of an European Research Commission consolidator grant and participates in the European Union FP7 programs EUBIOPRED and MedALL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Visualising mouse neuroanatomy and function by metal distribution using laser ablation-inductively coupled plasma-mass spectrometry imaging

    Get PDF
    © The Royal Society of Chemistry 2015. Metals have a number of important roles within the brain. We used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to map the three-dimensional concentrations and distributions of transition metals, in particular iron (Fe), copper (Cu) and zinc (Zn) within the murine brain. LA-ICP-MS is one of the leading analytical tools for measuring metals in tissue samples. Here, we present a complete data reduction protocol for measuring metals in biological samples, including the application of a pyramidal voxel registration technique to reproducibly align tissue sections. We used gold (Au) nanoparticle and ytterbium (Yb)-tagged tyrosine hydroxylase antibodies to assess the co-localisation of Fe and dopamine throughout the entire mouse brain. We also examined the natural clustering of metal concentrations within the murine brain to elucidate areas of similar composition. This clustering technique uses a mathematical approach to identify multiple 'elemental clusters', avoiding user bias and showing that metal composition follows a hierarchical organisation of neuroanatomical structures. This work provides new insight into the distinct compartmentalisation of metals in the brain, and presents new avenues of exploration with regard to region-specific, metal-associated neurodegeneration observed in several chronic neurodegenerative diseases

    The use of bibliometrics for assessing research : possibilities, limitations and adverse effects

    Get PDF
    Researchers are used to being evaluated: publications, hiring, tenure and funding decisions are all based on the evaluation of research. Traditionally, this evaluation relied on judgement of peers but, in the light of limited resources and increased bureaucratization of science, peer review is getting more and more replaced or complemented with bibliometric methods. Central to the introduction of bibliometrics in research evaluation was the creation of the Science Citation Index (SCI)in the 1960s, a citation database initially developed for the retrieval of scientific information. Embedded in this database was the Impact Factor, first used as a tool for the selection of journals to cover in the SCI, which then became a synonym for journal quality and academic prestige. Over the last 10 years, this indicator became powerful enough to influence researchers’ publication patterns in so far as it became one of the most important criteria to select a publication venue. Regardless of its many flaws as a journal metric and its inadequacy as a predictor of citations on the paper level, it became the go-to indicator of research quality and was used and misused by authors, editors, publishers and research policy makers alike. The h-index, introduced as an indicator of both output and impact combined in one simple number, has experienced a similar fate, mainly due to simplicity and availability. Despite their massive use, these measures are too simple to capture the complexity and multiple dimensions of research output and impact. This chapter provides an overview of bibliometric methods, from the development of citation indexing as a tool for information retrieval to its application in research evaluation, and discusses their misuse and effects on researchers’ scholarly communication behavior

    The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress

    Get PDF
    The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81

    Maternal feeding practices and fussy eating in toddlerhood: A discordant twin analysis

    Get PDF
    Background: Parental feeding practices are thought to play a causal role in shaping a child's fussiness; however, a child-responsive model suggests that feeding practices may develop in response to a child's emerging appetitive characteristics. We used a novel twin study design to test the hypothesis that mothers vary their feeding practices for twin children who differ in their 'food fussiness', in support of a child-responsive model. Methods: Participants were mothers and their 16 month old twin children (n=2026) from Gemini, a British twin birth cohort of children born in 2007. Standardized psychometric measures of maternal 'pressure to eat', 'restriction' and 'instrumental feeding', as well as child 'food fussiness', were completed by mothers. Within-family analyses examined if twin-pair differences in 'food fussiness' were associated with differences in feeding practices using linear regression models. In a subset of twins (n=247 pairs) who were the most discordant (highest quartile) on 'food fussiness' (difference score≥.50), Paired Samples T-test were used to explore the magnitude of differences in feeding practices between twins. Between-family analyses used Complex Samples General Linear Models to examine associations between feeding practices and 'food fussiness'. Results: Within-pair differences in 'food fussiness' were associated with differential 'pressure to eat' and 'instrumental feeding' (ps<.001), but not with 'restriction'. In the subset of twins most discordant on 'food fussiness', mothers used more pressure (p<.001) and food rewards (p<.05) with the fussier twin. Between-family analyses indicated that 'pressure to eat' and 'instrumental feeding' were positively associated with 'food fussiness', while 'restriction' was negatively associated with 'food fussiness' (ps<.001). Conclusions: Mothers appear to subtly adjust their feeding practices according to their perceptions of their toddler's emerging fussy eating behavior. Specifically, the fussier toddler is pressured more than their less fussy co-twin, and is more likely to be offered food rewards. Guiding parents on how to respond to fussy eating may be an important aspect of promoting feeding practices that encourage food acceptance

    Virulence Regulator EspR of Mycobacterium tuberculosis Is a Nucleoid-Associated Protein

    Get PDF
    The principal virulence determinant of Mycobacterium tuberculosis (Mtb), the ESX-1 protein secretion system, is positively controlled at the transcriptional level by EspR. Depletion of EspR reportedly affects a small number of genes, both positively or negatively, including a key ESX-1 component, the espACD operon. EspR is also thought to be an ESX-1 substrate. Using EspR-specific antibodies in ChIP-Seq experiments (chromatin immunoprecipitation followed by ultra-high throughput DNA sequencing) we show that EspR binds to at least 165 loci on the Mtb genome. Included in the EspR regulon are genes encoding not only EspA, but also EspR itself, the ESX-2 and ESX-5 systems, a host of diverse cell wall functions, such as production of the complex lipid PDIM (phenolthiocerol dimycocerosate) and the PE/PPE cell-surface proteins. EspR binding sites are not restricted to promoter regions and can be clustered. This suggests that rather than functioning as a classical regulatory protein EspR acts globally as a nucleoid-associated protein capable of long-range interactions consistent with a recently established structural model. EspR expression was shown to be growth phase-dependent, peaking in the stationary phase. Overexpression in Mtb strain H37Rv revealed that EspR influences target gene expression both positively or negatively leading to growth arrest. At no stage was EspR secreted into the culture filtrate. Thus, rather than serving as a specific activator of a virulence locus, EspR is a novel nucleoid-associated protein, with both architectural and regulatory roles, that impacts cell wall functions and pathogenesis through multiple genes

    Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein

    Get PDF
    Lysenin from the coelomic fluid of the earthworm Eisenia fetida belongs to the aerolysin family of small β-pore-forming toxins (β-PFTs), some members of which are pathogenic to humans and animals. Despite efforts, a high-resolution structure of a channel for this family of proteins has been elusive and therefore the mechanism of activation and membrane insertion remains unclear. Here we determine the pore structure of lysenin by single particle cryo-EM, to 3.1 Å resolution. The nonameric assembly reveals a long β-barrel channel spanning the length of the complex that, unexpectedly, includes the two pre-insertion strands flanking the hypothetical membrane-insertion loop. Examination of other members of the aerolysin family reveals high structural preservation in this region, indicating that the membrane-insertion pathway in this family is conserved. For some toxins, proteolytic activation and pro-peptide removal will facilitate unfolding of the pre-insertion strands, allowing them to form the β-barrel of the channel
    corecore