505 research outputs found
A continuous Flaring- to Normal-branch transition in Sco X-1
We report the first resolved rapid transition from a Flaring Branch
Oscillation to a Normal Branch Oscillation in the RXTE data of the Z source Sco
X-1. The transition took place on a time scale of ~100 seconds and was clearly
associated to the Normal Branch-Flaring Branch vertex in the color-color
diagram. We discuss the results in the context of the possible association of
the Normal Branch Oscillation with other oscillations known both in
Neutron-Star and Black-Hole systems, concentrating on the similarities with the
narrow 4-6 Hz oscillations observed at high flux in Black-Hole Candidates.Comment: 5 pages, 4 figures, accepted for publication in Astronomy &
Astrophysic
Linking the X-ray timing and spectral properties of the glitching AXP 1RXS J170849-400910
Previous studies of the X-ray flux and spectral properties of 1RXS
J170849-400910 showed hints of a possible correlation with the spin glitches
that occurred in 1999 and 2001. However, due to the sparseness of spectral
measurements and the paucity of detected glitches no firm conclusion could be
drawn. We retrieved and analysed archival XTE pointings of 1RXS J170849-400910
covering the time interval between January 2003 and June 2006 and carried out a
detailed timing analysis by means of phase fitting techniques. We detected two
relatively large glitches Delta nu / nu of 1.2 and 2.1 10^-6 occurred in
January and June 2005. Interestingly, the occurrence times of these glitches
are in agreement with the predictions made in our previous studies. This
finding strongly suggests a connection between the flux, spectral and timing
properties of 1RXS J170849-400910.Comment: Submitted to A&A, 4 pages; results presented at the INT meeting "The
Neutron Star Crust and Surface: Observations and Models" on June 27; referee
comments adde
The rigidity of crystalline color superconducting quark matter
We calculate the shear modulus of crystalline color superconducting quark
matter, showing that this phase of dense, but not asymptotically dense,
three-flavor quark matter responds to shear stress like a very rigid solid. To
evaluate the shear modulus, we derive the low energy effective Lagrangian that
describes the phonons that originate from the spontaneous breaking of
translation invariance by the spatial modulation of the gap parameter .
These massless bosons describe space- and time-dependent fluctuations of the
crystal structure and are analogous to the phonons in ordinary crystals. The
coefficients of the spatial derivative terms of the phonon effective Lagrangian
are related to the elastic moduli of the crystal; the coefficients that encode
the linear response of the crystal to a shearing stress define the shear
modulus. We analyze the two particular crystal structures which are
energetically favored over a wide range of densities, in each case evaluating
the phonon effective action and the shear modulus up to order in a
Ginzburg-Landau expansion, finding shear moduli which are 20 to 1000 times
larger than those of neutron star crusts. The crystalline color superconducting
phase has long been known to be a superfluid -- by picking a phase its order
parameter breaks the quark-number symmetry spontaneously. Our results
demonstrate that this superfluid phase of matter is at the same time a rigid
solid. We close with a rough estimate of the pinning force on the rotational
vortices which would be formed embedded within this rigid superfluid upon
rotation. Our results raise the possibility that (some) pulsar glitches could
originate within a quark matter core deep within a neutron star.Comment: 38 pages, 5 figures. v3. Two new paragraphs in Section V
(Conclusion); some additional small changes. A paragraph discussing
supercurrents added in Section I (Introduction). Version to appear in Phys.
Rev.
Gravitational-wave bursts and stochastic background from superfluid vortex avalanches during pulsar glitches
The current-quadrupole gravitational-wave signal emitted during the spin-up
phase of a pulsar glitch is calculated from first principles by modeling the
vortex dynamics observed in recent Gross-Pitaevskii simulations of pinned,
decelerating quantum condensates. Homogeneous and inhomogeneous unpinning
geometries, representing creep- and avalanche-like glitches, provide lower and
upper bounds on the gravitational wave signal strength respectively. The signal
arising from homogeneous glitches is found to scale with the square root of
glitch size, whereas the signal from inhomogeneous glitches scales proportional
to glitch size. The signal is also computed as a function of vortex travel
distance and stellar angular velocity. Convenient amplitude scalings are
derived as functions of these parameters. For the typical astrophysical
situation, where the glitch duration (in units of the spin period) is large
compared to the vortex travel distance (in units of the stellar radius), an
individual glitch from an object from Earth generates a wave
strain of , where is the average
distance travelled by a vortex during a glitch, is the
fractional glitch size, and is the pulsar angular velocity. The
non-detection of a signal from the 2006 Vela glitch in data from the fifth
science run conducted by the Laser Interferometer Gravitational-Wave
Observatory implies that the glitch duration exceeds .
This represents the first observational lower bound on glitch duration to be
obtained.Comment: Accepted for publication in MNRA
Approximate analytic expressions for circular orbits around rapidly rotating compact stars
We calculate stationary configurations of rapidly rotating compact stars in
general relativity, to study the properties of circular orbits of test
particles in the equatorial plane. We search for simple, but precise,
analytical formulae for the orbital frequency, specific angular momentum and
binding energy of a test particle, valid for any equation of state and for any
rotation frequency of the rigidly rotating compact star, up to the
mass-shedding limit. Numerical calculations are performed using precise 2-D
codes based on multi-domain spectral methods. Models of rigidly rotating
neutron stars and the space-time outside them are calculated for several
equations of state of dense matter. Calculations are also performed for quark
stars consisting of self-bound quark matter. At the mass-shedding limit, the
rotational frequency converges to a Schwarzschildian orbital frequency at the
equator. We show that orbital frequency for any orbit outside equator is also
approximated by a Schwarzschildian formula. Using a simple approximation for
the frame-dragging term, we obtain approximate expressions for the specific
angular momentum and specific energy on the corotating circular orbits in the
equatorial plane of neutron star, which are valid down to the stellar equator.
The formulae recover reference numerical values with typically 1% of accuracy
for neutron stars with M > 0.5 M_sun. They are less precise for quark stars
consisting of self-bound quark matter.Comment: 6 pages, 6 figures, A&A in pres
Future X-ray timing missions
Thanks to the Rossi X-ray Timing Explorer (RXTE), it is now widely recognized
that fast X-ray timing can be used to probe strong gravity fields around
collapsed objects and constrain the equation of state of dense matter in
neutron stars. We first discuss some of the outstanding issues which could be
solved with an X-ray timing mission building on the great successes of RXTE and
providing an order of magnitude better sensitivity. Then we briefly describe
the 'Experiment for X-ray timing and Relativistic Astrophysics' (EXTRA)
recently proposed to the European Space Agency as a follow-up to RXTE and the
related US mission 'Relativistic Astrophysics Explorer' (RAE).Comment: To be published in `Proceedings of the Third Microquasar Workshop:
Granada Workshop on galactic relativistic jet sources', Eds A. J.
Castro-Tirado, J. Greiner and J. M. Paredes, Astrophysics and Space Science,
in press. More about EXTRA can be found at:
http://www.cesr.fr/~barret/extra.htm
R-Modes in Superfluid Neutron Stars
The analogs of r-modes in superfluid neutron stars are studied here. These
modes, which are governed primarily by the Coriolis force, are identical to
their ordinary-fluid counterparts at the lowest order in the small
angular-velocity expansion used here. The equations that determine the next
order terms are derived and solved numerically for fairly realistic superfluid
neutron-star models. The damping of these modes by superfluid ``mutual
friction'' (which vanishes at the lowest order in this expansion) is found to
have a characteristic time-scale of about 10^4 s for the m=2 r-mode in a
``typical'' superfluid neutron-star model. This time-scale is far too long to
allow mutual friction to suppress the recently discovered gravitational
radiation driven instability in the r-modes. However, the strength of the
mutual friction damping depends very sensitively on the details of the
neutron-star core superfluid. A small fraction of the presently acceptable
range of superfluid models have characteristic mutual friction damping times
that are short enough (i.e. shorter than about 5 s) to suppress the
gravitational radiation driven instability completely.Comment: 15 pages, 8 figure
Timing of the 2008 Outburst of SAX J1808.4-3658 with XMM-Newton: A Stable Orbital Period Derivative over Ten Years
We report on a timing analysis performed on a 62-ks long XMM-Newton
observation of the accreting millisecond pulsar SAX J1808.4-3658 during the
latest X-ray outburst that started on September 21, 2008. By connecting the
time of arrivals of the pulses observed during the XMM observation, we derived
the best-fit orbital solution and a best-fit value of the spin period for the
2008 outburst. Comparing this new set of orbital parameters and, in particular,
the value of the time of ascending-node passage with the orbital parameters
derived for the previous four X-ray outbursts of SAX J1808.4-3658 observed by
the PCA on board RXTE, we find an updated value of the orbital period
derivative, which turns out to be s/s. This new value of the orbital period derivative agrees with the
previously reported value, demonstrating that the orbital period derivative in
this source has remained stable over the past ten years. Although this timespan
is not sufficient yet for confirming the secular evolution of the system, we
again propose an explanation of this behavior in terms of a highly
non-conservative mass transfer in this system, where the accreted mass (as
derived from the X-ray luminosity during outbursts) accounts for a mere 1% of
the mass lost by the companion.Comment: 4 pages, 3 figures. Final version, including editing corrections, to
appear on A&A Letter
Stability of the Magnetopause of Disk-Accreting Rotating Stars
We discuss three modes of oscillation of accretion disks around rotating
magnetized neutron stars which may explain the separations of the kilo-Hertz
quasi periodic oscillations (QPO) seen in low mass X-ray binaries. The
existence of these compressible, non-barotropic magnetohydrodynamic (MHD) modes
requires that there be a maximum in the angular velocity of
the accreting material larger than the angular velocity of the star ,
and that the fluid is in approximately circular motion near this maximum rather
than moving rapidly towards the star or out of the disk plane into funnel
flows. Our MHD simulations show this type of flow and profile.
The first mode is a Rossby wave instability (RWI) mode which is radially
trapped in the vicinity of the maximum of a key function at
. The real part of the angular frequency of the mode is
, where is the azimuthal mode number.
The second mode, is a mode driven by the rotating, non-axisymmetric component
of the star's magnetic field. It has an angular frequency equal to the star's
angular rotation rate . This mode is strongly excited near the radius
of the Lindblad resonance which is slightly outside of . The third mode
arises naturally from the interaction of flow perturbation with the rotating
non-axisymmetric component of the star's magnetic field. It has an angular
frequency . We suggest that the first mode with is associated
with the upper QPO frequency, ; that the nonlinear interaction of the
first and second modes gives the lower QPO frequency, ;
and that the nonlinear interaction of the first and third modes gives the lower
QPO frequency , where .Comment: 10 pages, 7 figure
Search for pulsations at high radio frequencies from accreting millisecond X-ray pulsars in quiescence
It is commonly believed that millisecond radio pulsars have been spun up by
transfer of matter and angular momentum from a low-mass companion during an
X-ray active mass transfer phase. A subclass of low-mass X-ray binaries is that
of the accreting millisecond X-ray pulsars, transient systems that show periods
of X-ray quiescence during which radio emission could switch on. The aim of
this work is to search for millisecond pulsations from three accreting
millisecond X-ray pulsars, XTE J1751-305, XTE J1814-338, and SAX J1808.4-3658,
observed during their quiescent X-ray phases at high radio frequencies (5 - 8
GHz) in order to overcome the problem of the free-free absorption due to the
matter engulfing the system. A positive result would provide definite proof of
the recycling model, providing the direct link between the progenitors and
their evolutionary products. The data analysis methodology has been chosen on
the basis of the precise knowledge of orbital and spin parameters from X-ray
observations. It is subdivided in three steps: we corrected the time series for
the effects of (I) the dispersion due to interstellar medium and (II) of the
orbital motions, and finally (III) folded modulo the spin period to increase
the signal-to-noise ratio. No radio signal with spin and orbital
characteristics matching those of the X-ray sources has been found in our
search, down to very low flux density upper limits. We analysed several
mechanisms that could have prevented the detection of the signal, concluding
that the low luminosity of the sources and the geometric factor are the most
likely reasons for this negative result.Comment: 5 pages, 3 figures. Accepted for publication by A&
- …
