505 research outputs found

    A continuous Flaring- to Normal-branch transition in Sco X-1

    Full text link
    We report the first resolved rapid transition from a Flaring Branch Oscillation to a Normal Branch Oscillation in the RXTE data of the Z source Sco X-1. The transition took place on a time scale of ~100 seconds and was clearly associated to the Normal Branch-Flaring Branch vertex in the color-color diagram. We discuss the results in the context of the possible association of the Normal Branch Oscillation with other oscillations known both in Neutron-Star and Black-Hole systems, concentrating on the similarities with the narrow 4-6 Hz oscillations observed at high flux in Black-Hole Candidates.Comment: 5 pages, 4 figures, accepted for publication in Astronomy & Astrophysic

    Linking the X-ray timing and spectral properties of the glitching AXP 1RXS J170849-400910

    Full text link
    Previous studies of the X-ray flux and spectral properties of 1RXS J170849-400910 showed hints of a possible correlation with the spin glitches that occurred in 1999 and 2001. However, due to the sparseness of spectral measurements and the paucity of detected glitches no firm conclusion could be drawn. We retrieved and analysed archival XTE pointings of 1RXS J170849-400910 covering the time interval between January 2003 and June 2006 and carried out a detailed timing analysis by means of phase fitting techniques. We detected two relatively large glitches Delta nu / nu of 1.2 and 2.1 10^-6 occurred in January and June 2005. Interestingly, the occurrence times of these glitches are in agreement with the predictions made in our previous studies. This finding strongly suggests a connection between the flux, spectral and timing properties of 1RXS J170849-400910.Comment: Submitted to A&A, 4 pages; results presented at the INT meeting "The Neutron Star Crust and Surface: Observations and Models" on June 27; referee comments adde

    The rigidity of crystalline color superconducting quark matter

    Get PDF
    We calculate the shear modulus of crystalline color superconducting quark matter, showing that this phase of dense, but not asymptotically dense, three-flavor quark matter responds to shear stress like a very rigid solid. To evaluate the shear modulus, we derive the low energy effective Lagrangian that describes the phonons that originate from the spontaneous breaking of translation invariance by the spatial modulation of the gap parameter Δ\Delta. These massless bosons describe space- and time-dependent fluctuations of the crystal structure and are analogous to the phonons in ordinary crystals. The coefficients of the spatial derivative terms of the phonon effective Lagrangian are related to the elastic moduli of the crystal; the coefficients that encode the linear response of the crystal to a shearing stress define the shear modulus. We analyze the two particular crystal structures which are energetically favored over a wide range of densities, in each case evaluating the phonon effective action and the shear modulus up to order Δ2\Delta^2 in a Ginzburg-Landau expansion, finding shear moduli which are 20 to 1000 times larger than those of neutron star crusts. The crystalline color superconducting phase has long been known to be a superfluid -- by picking a phase its order parameter breaks the quark-number U(1)BU(1)_B symmetry spontaneously. Our results demonstrate that this superfluid phase of matter is at the same time a rigid solid. We close with a rough estimate of the pinning force on the rotational vortices which would be formed embedded within this rigid superfluid upon rotation. Our results raise the possibility that (some) pulsar glitches could originate within a quark matter core deep within a neutron star.Comment: 38 pages, 5 figures. v3. Two new paragraphs in Section V (Conclusion); some additional small changes. A paragraph discussing supercurrents added in Section I (Introduction). Version to appear in Phys. Rev.

    Gravitational-wave bursts and stochastic background from superfluid vortex avalanches during pulsar glitches

    Full text link
    The current-quadrupole gravitational-wave signal emitted during the spin-up phase of a pulsar glitch is calculated from first principles by modeling the vortex dynamics observed in recent Gross-Pitaevskii simulations of pinned, decelerating quantum condensates. Homogeneous and inhomogeneous unpinning geometries, representing creep- and avalanche-like glitches, provide lower and upper bounds on the gravitational wave signal strength respectively. The signal arising from homogeneous glitches is found to scale with the square root of glitch size, whereas the signal from inhomogeneous glitches scales proportional to glitch size. The signal is also computed as a function of vortex travel distance and stellar angular velocity. Convenient amplitude scalings are derived as functions of these parameters. For the typical astrophysical situation, where the glitch duration (in units of the spin period) is large compared to the vortex travel distance (in units of the stellar radius), an individual glitch from an object 1kpc1\,\rm{kpc} from Earth generates a wave strain of 1024[(Δω/ω)/107](ω/102rads1)3(Δr/102m)110^{-24} [(\Delta\omega/\omega) / 10^{-7}] (\omega/10^2 \rm{rad s}^{-1})^3 (\Delta r / 10^{-2} \rm{m})^{-1}, where Δr\Delta r is the average distance travelled by a vortex during a glitch, Δω/ω\Delta\omega/\omega is the fractional glitch size, and ω\omega is the pulsar angular velocity. The non-detection of a signal from the 2006 Vela glitch in data from the fifth science run conducted by the Laser Interferometer Gravitational-Wave Observatory implies that the glitch duration exceeds 104ms\sim 10^{-4}\,\rm{ms}. This represents the first observational lower bound on glitch duration to be obtained.Comment: Accepted for publication in MNRA

    Approximate analytic expressions for circular orbits around rapidly rotating compact stars

    Full text link
    We calculate stationary configurations of rapidly rotating compact stars in general relativity, to study the properties of circular orbits of test particles in the equatorial plane. We search for simple, but precise, analytical formulae for the orbital frequency, specific angular momentum and binding energy of a test particle, valid for any equation of state and for any rotation frequency of the rigidly rotating compact star, up to the mass-shedding limit. Numerical calculations are performed using precise 2-D codes based on multi-domain spectral methods. Models of rigidly rotating neutron stars and the space-time outside them are calculated for several equations of state of dense matter. Calculations are also performed for quark stars consisting of self-bound quark matter. At the mass-shedding limit, the rotational frequency converges to a Schwarzschildian orbital frequency at the equator. We show that orbital frequency for any orbit outside equator is also approximated by a Schwarzschildian formula. Using a simple approximation for the frame-dragging term, we obtain approximate expressions for the specific angular momentum and specific energy on the corotating circular orbits in the equatorial plane of neutron star, which are valid down to the stellar equator. The formulae recover reference numerical values with typically 1% of accuracy for neutron stars with M > 0.5 M_sun. They are less precise for quark stars consisting of self-bound quark matter.Comment: 6 pages, 6 figures, A&A in pres

    Future X-ray timing missions

    Get PDF
    Thanks to the Rossi X-ray Timing Explorer (RXTE), it is now widely recognized that fast X-ray timing can be used to probe strong gravity fields around collapsed objects and constrain the equation of state of dense matter in neutron stars. We first discuss some of the outstanding issues which could be solved with an X-ray timing mission building on the great successes of RXTE and providing an order of magnitude better sensitivity. Then we briefly describe the 'Experiment for X-ray timing and Relativistic Astrophysics' (EXTRA) recently proposed to the European Space Agency as a follow-up to RXTE and the related US mission 'Relativistic Astrophysics Explorer' (RAE).Comment: To be published in `Proceedings of the Third Microquasar Workshop: Granada Workshop on galactic relativistic jet sources', Eds A. J. Castro-Tirado, J. Greiner and J. M. Paredes, Astrophysics and Space Science, in press. More about EXTRA can be found at: http://www.cesr.fr/~barret/extra.htm

    R-Modes in Superfluid Neutron Stars

    Get PDF
    The analogs of r-modes in superfluid neutron stars are studied here. These modes, which are governed primarily by the Coriolis force, are identical to their ordinary-fluid counterparts at the lowest order in the small angular-velocity expansion used here. The equations that determine the next order terms are derived and solved numerically for fairly realistic superfluid neutron-star models. The damping of these modes by superfluid ``mutual friction'' (which vanishes at the lowest order in this expansion) is found to have a characteristic time-scale of about 10^4 s for the m=2 r-mode in a ``typical'' superfluid neutron-star model. This time-scale is far too long to allow mutual friction to suppress the recently discovered gravitational radiation driven instability in the r-modes. However, the strength of the mutual friction damping depends very sensitively on the details of the neutron-star core superfluid. A small fraction of the presently acceptable range of superfluid models have characteristic mutual friction damping times that are short enough (i.e. shorter than about 5 s) to suppress the gravitational radiation driven instability completely.Comment: 15 pages, 8 figure

    Timing of the 2008 Outburst of SAX J1808.4-3658 with XMM-Newton: A Stable Orbital Period Derivative over Ten Years

    Full text link
    We report on a timing analysis performed on a 62-ks long XMM-Newton observation of the accreting millisecond pulsar SAX J1808.4-3658 during the latest X-ray outburst that started on September 21, 2008. By connecting the time of arrivals of the pulses observed during the XMM observation, we derived the best-fit orbital solution and a best-fit value of the spin period for the 2008 outburst. Comparing this new set of orbital parameters and, in particular, the value of the time of ascending-node passage with the orbital parameters derived for the previous four X-ray outbursts of SAX J1808.4-3658 observed by the PCA on board RXTE, we find an updated value of the orbital period derivative, which turns out to be P˙orb=(3.89±0.15)×1012\dot P_{\rm orb} = (3.89 \pm 0.15) \times 10^{-12} s/s. This new value of the orbital period derivative agrees with the previously reported value, demonstrating that the orbital period derivative in this source has remained stable over the past ten years. Although this timespan is not sufficient yet for confirming the secular evolution of the system, we again propose an explanation of this behavior in terms of a highly non-conservative mass transfer in this system, where the accreted mass (as derived from the X-ray luminosity during outbursts) accounts for a mere 1% of the mass lost by the companion.Comment: 4 pages, 3 figures. Final version, including editing corrections, to appear on A&A Letter

    Stability of the Magnetopause of Disk-Accreting Rotating Stars

    Full text link
    We discuss three modes of oscillation of accretion disks around rotating magnetized neutron stars which may explain the separations of the kilo-Hertz quasi periodic oscillations (QPO) seen in low mass X-ray binaries. The existence of these compressible, non-barotropic magnetohydrodynamic (MHD) modes requires that there be a maximum in the angular velocity Ωϕ(r)\Omega_\phi(r) of the accreting material larger than the angular velocity of the star Ω\Omega_*, and that the fluid is in approximately circular motion near this maximum rather than moving rapidly towards the star or out of the disk plane into funnel flows. Our MHD simulations show this type of flow and Ωϕ(r)\Omega_\phi(r) profile. The first mode is a Rossby wave instability (RWI) mode which is radially trapped in the vicinity of the maximum of a key function g(r)F(r)g(r){\cal F}(r) at rRr_{R}. The real part of the angular frequency of the mode is ωr=mΩϕ(rR)\omega_r=m\Omega_\phi(r_{R}), where m=1,2...m=1,2... is the azimuthal mode number. The second mode, is a mode driven by the rotating, non-axisymmetric component of the star's magnetic field. It has an angular frequency equal to the star's angular rotation rate Ω\Omega_*. This mode is strongly excited near the radius of the Lindblad resonance which is slightly outside of rRr_R. The third mode arises naturally from the interaction of flow perturbation with the rotating non-axisymmetric component of the star's magnetic field. It has an angular frequency Ω/2\Omega_*/2. We suggest that the first mode with m=1m=1 is associated with the upper QPO frequency, νu\nu_u; that the nonlinear interaction of the first and second modes gives the lower QPO frequency, ν=νuν\nu_\ell =\nu_u-\nu_*; and that the nonlinear interaction of the first and third modes gives the lower QPO frequency ν=νuν/2\nu_\ell=\nu_u-\nu_*/2, where ν=Ω/2π\nu_*=\Omega_*/2\pi.Comment: 10 pages, 7 figure

    Search for pulsations at high radio frequencies from accreting millisecond X-ray pulsars in quiescence

    Full text link
    It is commonly believed that millisecond radio pulsars have been spun up by transfer of matter and angular momentum from a low-mass companion during an X-ray active mass transfer phase. A subclass of low-mass X-ray binaries is that of the accreting millisecond X-ray pulsars, transient systems that show periods of X-ray quiescence during which radio emission could switch on. The aim of this work is to search for millisecond pulsations from three accreting millisecond X-ray pulsars, XTE J1751-305, XTE J1814-338, and SAX J1808.4-3658, observed during their quiescent X-ray phases at high radio frequencies (5 - 8 GHz) in order to overcome the problem of the free-free absorption due to the matter engulfing the system. A positive result would provide definite proof of the recycling model, providing the direct link between the progenitors and their evolutionary products. The data analysis methodology has been chosen on the basis of the precise knowledge of orbital and spin parameters from X-ray observations. It is subdivided in three steps: we corrected the time series for the effects of (I) the dispersion due to interstellar medium and (II) of the orbital motions, and finally (III) folded modulo the spin period to increase the signal-to-noise ratio. No radio signal with spin and orbital characteristics matching those of the X-ray sources has been found in our search, down to very low flux density upper limits. We analysed several mechanisms that could have prevented the detection of the signal, concluding that the low luminosity of the sources and the geometric factor are the most likely reasons for this negative result.Comment: 5 pages, 3 figures. Accepted for publication by A&
    corecore