The analogs of r-modes in superfluid neutron stars are studied here. These
modes, which are governed primarily by the Coriolis force, are identical to
their ordinary-fluid counterparts at the lowest order in the small
angular-velocity expansion used here. The equations that determine the next
order terms are derived and solved numerically for fairly realistic superfluid
neutron-star models. The damping of these modes by superfluid ``mutual
friction'' (which vanishes at the lowest order in this expansion) is found to
have a characteristic time-scale of about 10^4 s for the m=2 r-mode in a
``typical'' superfluid neutron-star model. This time-scale is far too long to
allow mutual friction to suppress the recently discovered gravitational
radiation driven instability in the r-modes. However, the strength of the
mutual friction damping depends very sensitively on the details of the
neutron-star core superfluid. A small fraction of the presently acceptable
range of superfluid models have characteristic mutual friction damping times
that are short enough (i.e. shorter than about 5 s) to suppress the
gravitational radiation driven instability completely.Comment: 15 pages, 8 figure