46 research outputs found

    Towards more efficient longline fisheries: fish feeding behaviour, bait characteristics and development of alternative baits

    Get PDF

    Choosing best practices for managing impacts of trawl fishing on seabed habitats and biota

    Get PDF
    Bottom trawling accounts for almost one quarter of global fish landings but may also have significant and unwanted impacts on seabed habitats and biota. Management measures and voluntary industry actions can reduce these impacts, helping to meet sustainability objectives for fisheries, conservation and environmental management. These include changes in gear design and operation of trawls, spatial controls, impact quotas and effort controls. We review nine different measures and actions and use published studies anda simple conceptual model to evaluate and compare their performance. The risks and benefits of these management measures depend on the extent to which the fishery is already achieving management objectives for target stocks and the characteristics of the management system that is already in place. We offer guidance on identifying best practices for trawl-fisheries management and show that best practices and their likelihood of reducing trawling impacts depend on local, national and regional management objectives and priorities, societal values and resources for implementation. There is no universalbest practice, and multiple management measures and industry actions are required to meet sustainability objectives and improve trade-offs between food production and environmental protection

    Connectivity of larval stages of sedentary marine communities between hard substrates and offshore structures in the North Sea

    Get PDF
    Man-made structures including rigs, pipelines, cables, renewable energy devices, and ship wrecks, offer hard substrate in the largely soft-sediment environment of the North Sea. These structures become colonised by sedentary organisms and non-migratory reef fish, and form local ecosystems that attract larger predators including seals, birds, and fish. It is possible that these structures form a system of interconnected reef environments through the planktonic dispersal of the pelagic stages of organisms by ocean currents. Changes to the overall arrangement of hard substrate areas through removal or addition of individual man-made structures will affect the interconnectivity and could impact on the ecosystem. Here, we assessed the connectivity of sectors with oil and gas structures, wind farms, wrecks, and natural hard substrate, using a model that simulates the drift of planktonic stages of seven organisms with sedentary adult stages associated with hard substrate, applied to the period 2001–2010. Connectivity was assessed using a classification system designed to address the function of sectors in the network. Results showed a relatively stable overall spatial distribution of sector function but with distinct variations between species and years. The results are discussed in the context of decommissioning of oil and gas infrastructure in the North Sea

    Tracking reveals limited interactions between Campbell Albatross and fisheries during the breeding season

    Get PDF
    International audienceFisheries-related mortality has been influential in driving global declines in seabird populations. Understanding the overlap between seabird distribution and fisheries is one important element in assessing bycatch risk, and may be achieved by tracking the movements of individual birds and fishing vessels. Here, we assess the spatiotemporal overlap between the vulnerable Campbell Albatross Thalassarche impavida and large (>28 m) commercial fishing boats in New Zealand’s Exclusive Economic Zone (EEZ). We used a novel analytical approach, bivariate Gaussian bridge movement modelling, to compute spatiotemporal utilization distributions of bird-borne global positioning system (GPS) loggers and data from the Vessel Monitoring System. We tracked birds for 28,815 h during incubation and chick brooding, with half of this time spent within New Zealand’s EEZ, utilizing 6.7% of the available area. However, there was no evidence that albatrosses and fishing vessels were in the same location simultaneously. We accounted for the broader ecological footprint of fishing vessels by calculating the distance between GPS-fix locations for albatrosses and fishing vessels, revealing that albatrosses were within 30 km of fishing vessels in 8.4% of foraging trips. This highlights differences in estimated fine-scale spatiotemporal overlaps which may be due to the distance between albatrosses and vessels or the methods used. Overall, the low levels of spatial overlap could be a result of Campbell Albatross’ preference for foraging in areas without fishing activity or competitive exclusion by other species. Our results reinforce the importance of multi-scale, temporally explicit, and multi-national approaches to risk assessment, as Campbell Albatrosses spend approximately half of their time foraging outside New Zealand’s EEZ

    Behavioural responses of krill and cod to artificial light in laboratory experiments

    Get PDF
    <div><p>Most fishes and crustaceans respond to light, and artificial light sources may therefore be an efficient stimulus to manipulate behaviours in aquatic animals. It has been hypothesised that the catch efficiency of pots could be increased if prey, for example krill, can be attracted into the pots providing a visual stimulus and a source of live bait. To find which light characteristics are most attractive to krill, we tested the effects of light intensity and wavelength composition on Northern krill’s (<i>Meganyctiphanes norvegica</i>) behavioural response to an artificial light source. The most attractive individual wavelength was 530 nm (green light), while broadband (425–750 nm) white light was an equally attractive light source. The intensity of the emitted light did not appear to have a direct effect on attraction to the light source, however it did significantly increase swimming activity among the observed krill. The most promising light stimuli for krill were tested to determine whether they would have a repulsive or attractive effect on cod (<i>Gadus morhua</i>); These light stimuli appeared to have a slightly repulsive, but non-significant, effect on cod. However, we suggest that a swarm of krill attracted to an artificial light source may produce a more effective visual stimulus to foraging cod.</p></div

    Proportion of active krill related to wavelength and intensity.

    No full text
    <p>The proportion of krill (<i>Magenyctiphanes norvegica</i>) observed to be active during replicate treatments (blue circles, jittered) and GEE fitted values (Black line) with 95% confidence intervals (grey shaded band), with respect to wavelength and light intensity (0.25, 0.5 & 1.0 μE m<sup>-2</sup> s<sup>-1</sup>). X-axis is not to scale, and for comparison broadband white light (400-800nm) is displayed at the end.</p
    corecore