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Abstract 20 

The last century has seen a significant decline in global seabird populations that can, in part, 21 

be attributed to fisheries mortality. Understanding overlap between seabird distribution and 22 

fisheries is one important element in assessing the risk of bycatch, and may be achieved by 23 

tracking the movements of individual birds and fishing vessels. Here we assess the spatio-24 

temporal overlap between the vulnerable Campbell Albatross Thalassarche impavida and 25 

large (>28m) commercial fishing boats in New Zealand’s Exclusive Economic Zone (EEZ). 26 

We used bivariate Gaussian bridge movement models to compute spatio-temporal utilization 27 

distributions, both from high-resolution bird-borne GPS loggers and the Vessel Monitoring 28 

System, to estimate potential interactions with fisheries during the breeding season. During 29 

incubation and chick brooding, 49.7% of the 28,814.9 hours Campbell Albatrosses spent 30 

foraging were within New Zealand’s EEZ, utilizing 6.7% of the available area. Within the 31 

EEZ, albatrosses only overlapped with fisheries vessels in a relatively small section in the 32 

southern portion of these waters. Despite this spatial overlap, there was no evidence that 33 

albatrosses and fishing vessels were in the same location simultaneously. When accounting 34 

for the broader ecological footprint of fishing vessels, which can influence bird behaviour for 35 

up to 30 km, we found albatross–vessel overlap in 8.4% of foraging trips. Overall, the low 36 

levels of spatial overlap could be a result of preference for foraging in areas without fishing 37 

activity or competitive exclusion by other species. While higher resolution data from both 38 

birds and vessels will improve our ability to detect the true nature of interactions, as opposed 39 

to just overlap, the current threat of bycatch during the breeding season appears 40 

comparatively low. Our results reinforce the importance of a multi-scale approach to risk 41 

assessment, as results that rely solely on large-scale spatial overlap may overestimate risk 42 

associated with fisheries. However, as Campbell Albatross spend approximately half of their 43 
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time foraging outside New Zealand’s EEZ, conservation and fisheries management for this 44 

species requires a multi-national focus.  45 

Key words: seabird-fishery interactions, Campbell Albatross, New Zealand EEZ, bivariate 46 

Gaussian Bridge movement models, spatio-temporal overlaps, bycatch 47 

Introduction 48 

Population declines in seabirds, particularly albatrosses and petrels, have been attributed to 49 

fisheries-related mortality from accidental bycatch (Brothers 1991; Nel et al. 2002; Sullivan 50 

et al. 2006; Rolland et al. 2010; Anderson et al. 2011). Globally, it is estimated that tens of 51 

thousands of seabirds are killed every year – levels of mortality which are unsustainable. 52 

However estimates of fisheries-related mortality vary greatly by location and among species 53 

(Lewison and Crowder 2003; Anderson et al. 2011), and risk of bycatch is known to vary 54 

within species as a function of sex, age, and inter-individual differences in foraging site 55 

preference and behaviour (Nel et al. 2002; Votier et al. 2010; Tuck et al. 2015). 56 

Conservation efforts to reduce seabird bycatch have been aided by identifying regions of 57 

seabird-fishery overlap to inform mitigation measures. Recently, bird-borne tracking has been 58 

used in tandem with spatially explicit fisheries data to better quantify the nature and extent of 59 

spatio-temporal overlap (Votier et al. 2010; Granadeiro et al. 2011; Torres et al. 2011; Catry 60 

et al. 2013; Torres et al. 2013a; Votier et al. 2013; Bodey et al. 2014; Collet et al. 2015; 61 

Patrick et al. 2015). Various scales of analysis have been applied to seabird-fisheries overlap 62 

and have highlighted contrasting results, in some cases due to the resolution of the data as 63 

well as our limited ability to distinguish between interactions and overlap events (e.g. (Torres 64 

et al. 2013a). Thus, combining and contrasting multiple spatial and temporal scales may 65 
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provide complementary information necessary to enhance our understanding of the true 66 

nature of seabird– fishery interactions. 67 

In the present study, we examine the spatial and temporal overlap between fisheries vessels 68 

and the vulnerable Campbell Albatross Thalassarche impavida. Following a decline of 72% 69 

from 1966-1984 (Waugh et al. 1999), the population has been comparatively stable, with 70 

some suggestion of a slight decrease (Sagar 2014). In common with other species of 71 

albatross, the steep population decline coincided with increased fisheries effort in the 72 

Southern Ocean and variation in abundance has been attributed to the development of long-73 

line and trawl fisheries within the foraging range of these birds (Waugh et al. 1999; Moore 74 

2004; Sagar 2014). Campbell Albatross, and the closely related Black-browed Albatross T. 75 

melanophris, were regularly drowned by trawl fisheries and caught by longline vessels 76 

(Murray et al. 1993; Croxall and Gales 1998; Gales et al. 1998). Thus, our goal was to 77 

estimate the degree of spatio-temporal overlap between fisheries and breeding Campbell 78 

Albatross within New Zealand’s Exclusive Economic Zone (EEZ), to provide an updated 79 

understanding of bycatch risk in these waters and compare results at multiple spatio-temporal 80 

resolutions.  81 

We used two approaches to identify potential interactions between fisheries and Campbell 82 

Albatross during the breeding season. First, we used a novel method, bivariate Gaussian 83 

bridges (BGB), to estimate the space use of both birds and vessels during the complete time 84 

of tracking. This allows us to calculate the area of the EEZ used by albatrosses and vessels, as 85 

well as to estimate how often albatrosses and fisheries use the same area at multiple temporal 86 

scales. These results can be aggregated over time, such as breeding stage or season, which 87 

provides estimates similar to population-level or multi-species assessments of overlap 88 

between fishing activity and species distribution (e.g. kernel density analysis by (Phillips et 89 
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al. 2006). If overlap between albatrosses and vessels occurs at the same time, this technique 90 

produces results comparable to the fine-scale tracking data on Black-browed Albatross and 91 

fisheries in waters around the Falkland Islands (Granadeiro et al. 2011, Catry et al. 2013). 92 

However, instead of using straight-line interpolation (and its associated assumptions) with 93 

(Torres et al. 2011) or without (Granadeiro et al. 2011) spatial buffers, we modelled motion 94 

variance, both parallel and orthogonal, to depict movement and space use more accurately. 95 

Second, since recent work has shown that birds may change their behaviour in response to 96 

fishing vessels, even as far away as 30 km (Bodey et al. 2014, Collet et al. 2015), we 97 

investigated events during which albatrosses were in proximity to fishing vessels and 98 

explored differences in overlap as a function of the spatial scale over which fishing vessel 99 

occurrence may affect bird behaviour. These seabird-vessel overlaps may indicate potential 100 

interactions, as spacing between seabirds and vessels may fluctuate at shorter time periods 101 

than were recorded (e.g. < 10 minutes). This is similar to the results estimated by buffering 102 

known locations by distance and/or time (i.e. (Votier et al. 2010; Patrick et al. 2015). 103 

Whenever we identified such a potential interaction event, we investigated whether the 104 

frequency of bird-boat interactions was explained by sex, stage of reproduction (incubation 105 

and chick-brooding), and between two years. Because albatrosses have shorter foraging trips 106 

during chick brooding, and therefore spend more time in the EEZ (Sztukowski 2016), we 107 

expected that there would be more interactions with fisheries during this stage compared with 108 

incubation. Furthermore, because female Campbell Albatrosses tend to use areas that are 109 

closer to the New Zealand mainland than males (Sztukowski 2016), we hypothesise that 110 

females are more likely to encounter fishing vessels within the EEZ. Therefore, by examining 111 

albatross–fishery overlap as a function of variations in distance between birds and boats, we 112 

may increase our understanding of the factors, such as breeding stage and sex, that impact 113 
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interactions at various spatial scales, with concomitant implications for assessing risk of 114 

bycatch.  115 

Methods 116 

Albatross tracking 117 

We studied the endemic Campbell Albatross on Campbell Island, New Zealand (52°32′24″S, 118 

169°8′42″E) during two breeding seasons (10 November 2011 to 29 December 2011, and 19 119 

October 2012 to 27 December 2012; hereafter referred to as study years 2011 and 2012 120 

respectively). To record movement behaviour, we attached modified GT-600 i-gotU GPS 121 

loggers (Mobile Action Technology, New Taipei City, Taiwan) to the central back feathers of 122 

incubating and chick brooding adults using Tesa© tape. GPS loggers were modified by 123 

removing the external plastic housing, and then sealed with heat shrink tubing (FiniShrink, 124 

UK) to waterproof each unit. The loggers weighed 33 g, approximately 1.1% of albatross 125 

body mass, and were set to record location every 10 minutes. Birds were re-captured on the 126 

nest following one or more complete foraging trips, as determined by nest attendance 127 

surveys. During capture, a small aliquot (~0.05 ml) of blood was taken from each individual 128 

for molecular sexing (Avian Biotech, Truro, Cornwall) under permit from the New Zealand 129 

Department of Conservation. 130 

Vessel monitoring system 131 

We acquired data on the distribution and movement of fishing vessels via ship-borne GPS 132 

transponders provided by the New Zealand Ministry of Fisheries fishing vessel-monitoring 133 

system (VMS). Data were obtained for the same temporal period and spatial extent as the bird 134 

tracks (i.e., 10 November 2011 to 29 December 2011 and 19 October 2012 to 27 December 135 

2012). These data covered all fishing vessels >28 m in length operating within the New 136 

Zealand EEZ. Additionally, smaller vessels fishing for Orange Roughy (Hoplostethus 137 
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atlanticus) or New Zealand Scampi (Metanephrops challengeri) were also tracked. VMS 138 

transponders record vessel identification, speed, and location every 1 to 2 hours; gear type 139 

was not reported. Catch-effort data for our study period lacked the usual corresponding 140 

information needed to combine datasets. Catch-effort data also have low accuracy of event 141 

locations with unknown error (Torres et al. 2011), and thus were not used in our analyses. 142 

VMS data for areas outside the New Zealand EEZ were not available. Our analyses are 143 

therefore restricted to overlaps between albatrosses and VMS enabled vessels within the New 144 

Zealand EEZ, representing 49.7% of the 28,814.9 hours during which we logged Campbell 145 

Albatrosses on foraging trips. 146 

Data Analysis 147 

Spatio-temporal overlap between foraging albatrosses and fishing vessels within the EEZ 148 

We used bivariate Gaussian bridge (BGB) movement models to calculate the temporally 149 

explicit space use of both foraging Campbell Albatrosses and fisheries vessels to examine 150 

their encounter probabilities. The advantage of BGBs over classic measures of utilization 151 

distributions, such as convex polygons, or kernel home range, is that they track movement 152 

heterogeneity across time and use two directional components instead of one to gain more 153 

precise estimates of the space utilized by individual animals/vessels. Moreover, space use 154 

between any two locations can be computed separately, allowing for temporally explicit 155 

estimates of the utilization distribution (Kranstauber et al. 2014). This allowed us to calculate 156 

the spatial overlap between foraging albatrosses and fishing vessels contemporarily, and in 157 

contrast to previous studies examining the interaction between seabirds and fisheries (e.g. 158 

Granadeiro et al. 2011; Torres et al. 2011), we can determine space use directly from the 159 

movement rather than relying on linear interpolation with or without a buffer zone. The use 160 

of BGBs should thus provide more accurate results of spatio-temporal overlap.  161 
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To prepare the tracking data, we split the VMS data into separate fishing trips with the same 162 

format as the albatross data; each fishing vessel trip was defined as a series of GPS fixes that 163 

were separated by a maximum of 24 hours. To prevent computational issues with birds and 164 

fishing vessels crossing the international dateline we shifted the dateline of the data by 180 165 

degrees prior to all analyses. 166 

Coarse-scale spatio-temporal overlap between albatross and fisheries 167 

First, we calculated the total area utilized by each individual albatross and vessel to estimate 168 

the total spatial overlap during the complete study period (10 November 2011 to 29 169 

December 2011, and 19 October 2012 to 27 December 2012). This coarse-scale spatio-170 

temporal index is similar to population-level or multi-species assessments of overlap between 171 

fishing activity and species distribution (e.g. Phillips et al. 2006). We calculated the total 172 

space use of birds and fishing vessels during each foraging/fishing trip by computing BGBs 173 

on each complete trip, assuming a spatial location error of the GPS-devices of 18m for both 174 

the albatross data loggers and the VMS units of the vessels (Duncan et al. 2013). From these, 175 

we extracted the 95% estimates of total space use with a spatial resolution of 5 km, and re-176 

projected them to an equal-area projection. We then combined the space use estimates for all 177 

bird foraging trips and fishing vessel trips separately, and calculated the coarse-scale spatial 178 

overlap of these population-level space use estimates. 179 

Fine-scale spatio-temporal overlap between albatross and fisheries 180 

Secondly, we investigated whether birds and vessels shared similar areas during the same 181 

time period, creating a potential for interactions. To do so, we split the BGB for each 182 

albatross and vessel trip into its smallest temporal units: the space use between two 183 

consecutive locations (i.e. every ten minutes for albatrosses, every 2 hours for vessels). From 184 

these, we extracted the 95% utilization distributions with a spatial resolution of one square 185 



 9 

kilometre. For each potential encounter (utilization distributions with overlapping time 186 

intervals), we calculated the spatial overlap of the distribution estimates to estimate the area 187 

that was shared in space and time. 188 

Distance between GPS-fix locations for albatross and fishing vessels: Sex, stage and year 189 

effects 190 

The assessment of spatio-temporal overlap using BGBs (above) estimates simultaneous space 191 

use of foraging albatrosses and fishing vessels, however fisheries vessels can alter the 192 

behaviour of foraging seabirds at greater spatial scales. It has been shown that Northern 193 

Gannets (Morus bassanus) alter their behaviour as a response to the presence of fishing 194 

vessels within a range of up to 11 km (Bodey et al. 2014), and Wandering Albatross 195 

(Diomedea exulans) up to a distance of 30 km (Collet et al. 2015). To encompass the full 196 

effects of fishing vessels of foraging Campbell Albatross, we determined potential interaction 197 

events by calculating the distance to fishing vessels that were close in space and time using 198 

known locations. This is similar to modelling fishing vessel activity using windows of time 199 

and distance employed previously to avoid the assumptions associated with linear 200 

interpolation (i.e. Votier et al. 2010) or adding buffers to known locations (Patrick et al. 201 

2015). First, we calculated the rhomb line distance from every GPS-fix of an albatross to 202 

every fishing vessel GPS-fix recorded within two hours (the temporal resolution of VMS 203 

tracks). Analyses used the full data set as well as the subset of the data where albatross and 204 

fishing vessel were <11 km apart, assuming a conservative effect of the fishing vessel (Bodey 205 

et al. 2014); or <30 km apart (Collet et al. 2015).  206 

To investigate the effect of sex and stage of reproduction on the likelihood of observing 207 

potential interactions, we modelled the minimum observed distances between albatross and 208 

any fishing vessel using linear mixed-effects models. The models included individual bird as 209 
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a random effect (to control for repeat samples from the same bird) with year, sex and stage of 210 

reproduction (incubation and chick brooding) as fixed-level factors. We also fitted the two-211 

way interaction between sex and stage of reproduction, to determine whether any sex-specific 212 

effects of fisheries varied as a function of breeding stage. 213 

Results 214 

Over the two breeding seasons, we collected data from 299 foraging trips made by 81 215 

Campbell Albatrosses (43 males and 38 females; Table 1). The total area used by albatross 216 

within the EEZ was 291,128.2 km2 (6.7% of the EEZ, representing 32.0% of the total area 217 

used by birds). The rest of their foraging took place in the Tasman Sea, Australian waters or 218 

in international waters (Fig. 1). For the fishing vessels (n=83), a total of 320,510 VMS fixes 219 

were recorded during the same period of time, of which 99.9 % were within the EEZ. 220 

Subsequent results are thus based upon the EEZ only.  221 

During their foraging trips, the albatrosses used a mean of 3,835.1 ± 5,930.2 km² (mean ± 222 

standard deviation; 95% home range) and travelled over distances of 1,577.0 ± 2,222.5 km 223 

per trip (great-circle distances, see supplemental materials). Albatrosses spent 14,316.1 of the 224 

28,814.9 hours within the EEZ (49.7 %). 225 

Coarse-scale spatio-temporal overlap between albatross and fisheries 226 

During the tracking period, we found that Campbell Albatrosses and vessels spatially 227 

overlapped across 42,325.60 km2 within the EEZ when overlaying the full 95% utilization 228 

distributions (pooled data). Despite albatross using 6.7% of the EEZ, they overlapped with 229 

fisheries vessels in just 0.97% of the EEZ, mostly in the south (Fig. 1).  230 
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Fine-scale spatio-temporal overlap between albatross and fisheries 231 

When calculating whether shared space use by albatrosses and fisheries occurred at the same 232 

time, we used the temporally explicit 95% utilization distributions and found no overlap 233 

between vessels and birds (Table 1). Overall, albatrosses used of 291,128.2 km2 within the 234 

EEZ, and of this area, 42,325.6 km2 were also utilized by fishing vessels (supplemental 235 

materials). 236 

Distance between GPS-fix locations for albatross and fishing vessels: Sex, stage 237 

and year effects 238 

The minimum distance between GPS-fix locations of albatrosses and fishing vessels on 239 

foraging trips was significantly affected by breeding stage and year (Table 1). However, 240 

when using all spatial and temporal distances within 11 km and two hours of at least one 241 

vessel, albatrosses only overlapped during 17 of the 299 foraging trips (5.7%;  Table 2). 242 

These 17 trips were performed by 15 individual birds that were within 11 km and two hours 243 

of a fishing vessel (range 1-8 vessels) at some stage during their foraging trip. Under this 244 

analysis, year was marginally significant in the subset of foraging trips as all but one of these 245 

foraging trips occurred in 2012. Fisheries overlap was most common during incubation and, 246 

while sex had no significant effect, 12 of the 17 foraging trips with fisheries overlap were by 247 

males, which may be due to sample size (Table 2). Under the scenario of a vessel footprint of 248 

30 km, albatross foraging behaviour was potentially affected by fishing vessels on 25 249 

foraging trips (8.4%) made by 21 individuals. Eighty percent of those foraging trips occurred 250 

during incubation with a sex ratio of 9:16 (female:male). The maximum number of vessels an 251 

individual potentially encountered increased from 8 within the 11 km footprint to 11 within 252 

the 30km footprint. When testing the larger (30 km) footprint, sex, breeding stage and year 253 

were not significantly associated with the minimum distance between albatrosses and fishing 254 

vessels. In most cases, the period of overlap between Campbell Albatrosses and vessels lasted 255 
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less than 10% of the foraging trip within the EEZ (Table 2).  However a few individuals spent 256 

up to 65% of the foraging trip near vessels. 257 

Discussion 258 

We provide the first estimate of the degree of association between fisheries and breeding 259 

Campbell Albatross using a novel BGB analysis at both coarse and fine spatio-temporal 260 

scales. Despite Campbell Albatrosses utilizing 6.7% of the New Zealand EEZ, they only 261 

overlapped with fishing vessels in a remarkably small section in the southern portion of the 262 

EEZ (0.97% of the area). Furthermore, we found very limited spatio-temporal overlap 263 

suggesting that albatrosses and vessels may occupy the same areas, but seldom at the same 264 

time. These results suggest that during the breeding season the risk of fisheries bycatch for 265 

Campbell Albatross is low within the New Zealand EEZ. In addition, this reveals that fishing 266 

vessels are not always important as foraging opportunities for albatrosses. Below we discuss 267 

the implications of these findings for studying seabird–fishery interactions in general and for 268 

the Campbell Albatross in particular. 269 

Spatial area of overlap between albatross and vessels within the EEZ not only varied strongly 270 

depending upon the spatio-temporal resolution used, the assumed vessel footprint, and 271 

showed variation by sex and breeding stage. When accounting for an 11 km footprint (Bodey 272 

et al. 2014), we found overlap in 5.7% of trips, and these overlap periods generally lasted less 273 

than 10% of the trip within the EEZ. However a few individuals show substantial the spatio-274 

temporal overlap and they may be at a higher risk of mortality. When we expanded this area 275 

to 30 km, assuming that Campbell Albatrosses may behave like Wandering Albatrosses 276 

(Collet et al. 2015), we found the potential for interactions increased to 8.4% of foraging 277 

trips. We expected females to have a higher risk of fisheries interactions based on time spent 278 

in proximity to the New Zealand mainland, where the highest fishing activities occur, but, 279 
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contrary to our expectations, 12 of the 17 foraging trips within 11 km of fisheries vessels 280 

were by males. Further investigation is needed to determine if the skewed sex ratio is due to 281 

the small number of foraging trips with seabird-fisheries overlap or represent different 282 

survival probabilities as well as examining behavioural responses to assess if Campbell 283 

Albatross are attracted to vessels, avoid them, or co-occur/use the same habitat.  284 

Campbell Albatross is a “High Risk” species within New Zealand waters, based upon a semi-285 

quantitative assessment of spatial overlap, observed captures, and fishing effort to assess 286 

fisheries vulnerability (Ministry for Primary Industries 2014). Prior to 1998, information on 287 

bycatch rates for Campbell Albatross was limited, as they were considered a subspecies of 288 

Black-browed Albatross (Robertson and Nunn 1998; Sangster et al. 2013); thus bycatch rates 289 

prior to 1998 were often a combination of Campbell and Black-browed Albatrosses. From 290 

1989 to 1995, bycatch of Campbell Albatrosses in Australian waters was estimated at 780 per 291 

year (Gales et al. 1998), and thus could have had serious impacts on the estimated 24,600 292 

annual breeding pairs in 1995-1998 (Moore 2004; Sagar 2014). Bycatch rates in this longline 293 

tuna fishery were higher (up to 1.26 birds per 1000 hooks) in summer than in winter, and 294 

skewed toward juveniles. Murray et al. (1993) reported declines in bycatch in New Zealand 295 

waters from 3662 seabirds in 1988 to 360 seabirds in 1992, suggesting mitigation measures 296 

may have reduced bycatch. Alternatively individuals that associated with fishing vessels 297 

could have been removed from the population, limiting the number of albatross around 298 

vessels (Tuck et al. 2015). More recently, there were zero to three observed captures of 299 

Campbell Albatross per year from 2004 to 2013 (Abraham E. R., Thompson F. N). Thus, 300 

current annual estimates of potential fatalities for Campbell Albatrosses within New Zealand 301 

waters range from 44 to 356 birds ((Ministry for Primary Industries 2014)); 0.20 – 1.69% of 302 

the estimated breeding population 2006-2012 (Sagar 2014). Most of the bycatch is associated 303 

with surface longline fisheries (Ministry for Primary Industries 2014). Observed captures 304 
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from trawls were associated with fisheries for Hoki (Macruronus novaezelandiae), Arrow 305 

Squid (Nototodarus sloanii, N. gouldi), New Zealand Scampi and Southern Blue Whiting 306 

(Micromesistius australis), and occurred outside the incubation and chick brooding stages 307 

(Abraham and Thompson 2012). If we assume that there are 21,648 individuals foraging at 308 

any one time, then over our study time period, we could expect up to 1803 albatross foraging 309 

trips to overlap with fishing vessels within New Zealand’s EEZ (8.4 % of trips within 30 km 310 

footprint). Although it is unknown how many interactions with fishing vessels result in 311 

mortalities, these low bycatch rates agree well with the low overlap rates and lack of spatio-312 

temporal overlap recorded in our tracking study. During the Austral summers of 2011/12 and 313 

2012/13, Campbell Albatross spent about half their time foraging within the EEZ, however, 314 

the rest of their foraging took place in areas without available vessel monitoring data, mostly 315 

in the Tasman Sea or Australian waters. Thus, by focusing on VMS data within New 316 

Zealand’s EEZ we probably underestimate the frequency of overlap between Campbell 317 

Albatross and fishing vessels, and our results are limited to the breeding season. Campbell 318 

Albatross may be vulnerable to fisheries related mortality in areas not studied here, and at 319 

different ages and breeding stages (Murray et al. 1993; Gales et al. 1998), but our tracking 320 

data is consistent with other sources of data indicating that bycatch risk of adult Campbell 321 

Albatross within the New Zealand EEZ is low during the breeding season.  322 

There are a number of factors that may impact the nature of interactions between seabirds and 323 

fisheries, including the presence and timing of discards, the use of mitigation measures, 324 

weather, inter-species competition and the availability of other resources (Votier et al. 2008; 325 

Dietrich et al. 2008; Jiménez et al. 2009; Favero et al. 2011; Croxall et al. 2013). On the 326 

Patagonia Shelf, the frequency of Black-browed Albatross-fisheries interactions was 327 

associated with wind conditions, season, time of day, and the presence of discards (Favero et 328 

al. 2011). Management of discards, such as offal mincing, reducing discharge to sump water, 329 



 15 

or waste holding/batch discharge, can reduce the abundance of seabirds around fisheries 330 

vessels, with concomitant reductions in mortality risk (Abraham et al. 2009; Pierre et al. 331 

2010). Additionally, mitigation measures, such as night setting, weighted lines and Tori lines, 332 

have reduced bycatch rates and may also deter seabird-fisheries interactions (Løkkeborg 333 

2003; Dietrich et al. 2008). Inter-species competition may also reasonably account for the 334 

low interaction rates since fisheries within New Zealand’s EEZ frequently kill other albatross 335 

species. White-capped Albatross (Thalassarche steadi), for example, regularly attend fishing 336 

vessels in New Zealand waters and may out-compete Campbell Albatross (Bartle 1991; 337 

Torres et al. 2011). Annual variation in these factors combined with environmental variation 338 

could account for annual influences found in our models; for example, the area utilized 339 

during foraging trips was larger during 2012. 340 

Conservation implications 341 

Our results suggest that, because of the limited overlap between Campbell Albatross and 342 

fisheries in New Zealand waters during the breeding season, the risk of bycatch is relatively 343 

low. Moreover, examining coarse-scale spatio-temporal overlap with fisheries may provide 344 

an overestimate of risk if not accounting for fine-scale temporal components that may be 345 

further reduced if behavioural state of the bird is added. These finer scale analyses of spatio-346 

temporal overlap may both improve risk assessments and provide insight into foraging 347 

behaviour (Votier et al. 2010; Granadeiro et al. 2011; Croxall et al. 2013; Torres et al. 2013a; 348 

Torres et al. 2013b). While BGBs provide an excellent new tool to examine movements and 349 

overlaps between animals and fishing vessels, they require spatially and temporally explicit 350 

data. The regional focus of our study was constrained due to lack of data, thus reinforcing the 351 

need to increase the availability of high resolution fisheries data. Current estimates suggest 352 

that the population of Campbell Albatross is slightly declining or stable (Waugh et al. 1999; 353 

Sagar 2014). If declines continue without an increase in bycatch, other factors such as food 354 
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availability or environmental change should be carefully assessed. More importantly, 355 

conservation and fisheries management for this species needs to occur across all age-classes 356 

and on a multi-national scale, as juvenile Campbell Albatross may be more vulnerable to 357 

bycatch, and adult albatrosses spend half of their time foraging outside New Zealand waters. 358 

The timing and duration of mitigation measures could be improved by incorporating fine-359 

scale spatio-temporal distributions into dynamic ocean management, in which management 360 

efforts to reduce bycatch change in response to spatial and temporal alteration in the ocean or 361 

species movements  rather than largely static marine conservation areas (Howell et al. 2008; 362 

Hobday et al. 2010; Hobday et al. 2014).  363 
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Table 1. The effects of sex, breeding stage, and year on the minimum distance between 

Campbell Albatross and fishing vessels using linear mixed-effects models. Models included 

individual bird as a random effect (to control for repeat samples from the same bird).   

Distance Between Albatross and Fishing 

Vessels (Full Dataset)  

Distance Between Albatross and Fishing 

Vessels (Within 2 hours and ≤ 11 km) 

  DF F-value  p-value    DF F-value p-value 

Intercept 17659 3882.03   Intercept 21 23.94  

Sex 79 0.16 0.69  Sex 12 0.38 0.55 

Stage 17659 572.41 

<0.000

1  Stage 21 0.019 0.92 

Year 17659 6.57 0.01  Year 12 4.73 0.05 

Sex*Stage 17659 2.28 0.13      

      

  

Distance Between Albatross and Fishing 

Vessels (Within 2 hours and ≤ 30 km) 

       DF F-value p-value 

     Intercept 55 59.39  

     Sex 18 1.70 0.21 

     Stage 55 1.04 0.31 

     Year 18 0 0.98 

 



22 

 

Table 2. Interaction characteristics of foraging trips within 11 km or 30 km and 2 hours of fishing vessel location.  

     Within 11 km and 2 hours Within 30 km and 2 hours 

Individual 

Foraging 

Trip Sex Stage Year 

Number 

of 

Vessels 

Number 

of 

Locations 

Proportion 

of Trip 

Number 

of 

Vessels 

Number 

of 

Locations 

Proportion 

of Trip 

1 1 Female Incubation 2011 0 0 0 1 7 0.00 

2 2 Female Incubation 2012 0 0 0 4 8 0.00 

3 3 Female Incubation 2012 8 103 0.04 11 232 0.09 

3 4 Female Incubation 2012 6 246 0.14 6 506 0.30 

3 5 Female Chick Brooding 2012 0 0 0 3 6 0.02 

4 6 Female Incubation 2012 0 0 0 3 32 0.02 

4 7 Female Incubation 2012 1 7 0.01 1 18 0.02 

5 8 Female Incubation 2012 1 3 0.00 7 46 0.03 

6 9 Female Incubation 2012 1 2 0.00 1 30 0.01 

7 10 Male Chick Brooding 2011 1 2 0.00 1 11 0.01 

8 11 Male Incubation 2012 0 0 0.00 4 28 0.01 

9 12 Male Incubation 2012 6 962 0.49 7 1274 0.65 

10 13 Male Incubation 2012 1 5 0.01 1 53 0.10 

10 14 Male Chick Brooding 2012 2 17 0.05 3 71 0.20 

11 15 Male Incubation 2012 1 11 0.01 1 20 0.01 

12 16 Male Incubation 2012 1 21 0.01 5 50 0.02 

13 17 Male Chick Brooding 2012 1 39 0.14 1 65 0.23 

14 18 Male Incubation 2012 1 15 0.01 2 32 0.01 

15 19 Male Incubation 2012 1 53 0.02 3 122 0.04 

16 20 Male Incubation 2012 1 1 0.00 1 12 0.00 

17 21 Male Incubation 2012 0 0 0 2 22 0.01 

18 22 Male Incubation 2012 0 0 0 1 5 0.00 

19 23 Male Chick Brooding 2012 0 0 0 1 16 0.04 
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20 24 Male Incubation 2012 3 23 0.02 6 107 0.07 

21 25 Male Incubation 2012 1 3 0.00 1 12 0.00 
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Fig. 1. Spatial overlap between fishing vessels (2011: orange, 2012: yellow) and foraging trips within New Zealand’s Exclusive Economic Zone 

(black) during: a) incubation in 2011 (n=18), b) incubation in 2012 (n=41), c) chick brooding during 2011 (n=79) and d) chick brooding during 

2012 (n=161). Foraging trips were undertaken by females (red) and males (purple). Vessel monitoring data were transformed into a polygon. 
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Supplemental material. Distance travelled and spatial utilization (area) per foraging trip (mean ± standard deviation) for Campbell Albatrosses 

within New Zealand’s Exclusive Economic Zone (EEZ). Data are sub-divided by sex and stage of reproduction (incubation or chick brooding). 

Sex Year Stage 

Number 

of Trips 

Number of 

Individuals Area (km2) 

Distance 

Travelled (km) 

Time Inside 

EEZ (hours) 

Time Outside 

EEZ (hours) 

Female 2011 Incubation 12 11 2149.8 ± 1222.7 2482.3 ± 1858.5 23.4 ± 33.5 48.7 ± 100.2 

Female 2012 Incubation 16 13 3048.7 ± 2618.0 3892.9 ± 3013.3 55.3 ± 97.7 152.0 ± 168.2 

Female 2011 Chick Brooding 44 15 1172.7 ± 737.2 639.4 ± 602.8 35.1 ± 19.1 17.0 ± 28.6 

Female 2012 Chick Brooding 80 27 1375.3 ± 1088.3 843.6 ± 784.8 23.2 ± 18.5 15.4 ± 22.0 

Male 2011 Incubation 6 6 1570.7 ± 870.4 3552.8 ± 3441.1 25.3 ± 20.3 166.2 ± 101.7 

Male 2012 Incubation 25 24 2466.5 ± 1244.7 5558.9 ± 4159.6 35.5 ± 55.5 217.9 ± 165.4 

Male 2011 Chick Brooding 35 11 1112.6 ± 656.5 805.0 ± 875.9 35.8 ± 31.9 27.0 ± 28.5 

Male 2012 Chick Brooding 81 27 1372.9 ± 935.1 1117.3 ± 973.0 20.5 ± 16.3 34.5 ± 31.4 

 


