525 research outputs found

    Study and mitigation of spurious electron emission from cathodic wires in noble liquid time projection chambers

    Get PDF
    Noble liquid radiation detectors have long been afflicted by spurious electron emission from their cathodic electrodes. This phenomenon must be understood and mitigated in the next generation of liquid xenon (LXe) experiments searching for WIMP dark matter or neutrinoless double beta decay, and in the large liquid argon (LAr) detectors for the long-baseline neutrino programmes. We present a systematic study of this spurious emission involving a series of slow voltage-ramping tests on fine metal wires immersed in a two-phase xenon time projection chamber with single electron sensitivity. Emission currents as low as 10−18A can thus be detected by electron counting, a vast improvement over previous dedicated measurements. Emission episodes were recorded at surface fields as low as ∼ 10 kV/cm in some wires and observed to have complex emission patterns, with average rates of 10–200 counts per second (c/s) and outbreaks as high as ∼ 106c/s. A fainter, less variable type of emission was also present in all untreated samples. There is evidence of a partial conditioning effect, with subsequent tests yielding on average fewer emitters occurring at different fields for the same wire. We find no evidence for an intrinsic threshold particular to the metal-LXe interface which might have limited previous experiments up to fields of at least 160 kV/cm. The general phenomenology is not consistent with enhanced field emission from microscopic filaments, but it appears instead to be related to the quality of the wire surface in terms of corrosion and the nature of its oxide layer. This study concludes that some surface treatments, in particular nitric acid cleaning applied to stainless steel wires, can bring about at least order-of-magnitude improvements in overall electron emission rates, and this should help the next generation of detectors achieve the required electrostatic performance

    The ALHAMBRA survey: evolution of galaxy spectral segregation

    Get PDF
    We study the clustering of galaxies as a function of spectral type and redshift in the range 0.35<z<1.10.35 < z < 1.1 using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The data cover 2.381 deg2^2 in 7 fields, after applying a detailed angular selection mask, with accurate photometric redshifts [σz<0.014(1+z)\sigma_z < 0.014(1+z)] down to IAB<24I_{AB} < 24. From this catalog we draw five fixed number density, redshift-limited bins. We estimate the clustering evolution for two different spectral populations selected using the ALHAMBRA-based photometric templates: quiescent and star-forming galaxies. For each sample, we measure the real-space clustering using the projected correlation function. Our calculations are performed over the range [0.03,10.0]h1[0.03,10.0] h^{-1} Mpc, allowing us to find a steeper trend for rp0.2h1r_p \lesssim 0.2 h^{-1} Mpc, which is especially clear for star-forming galaxies. Our analysis also shows a clear early differentiation in the clustering properties of both populations: star-forming galaxies show weaker clustering with evolution in the correlation length over the analysed redshift range, while quiescent galaxies show stronger clustering already at high redshifts, and no appreciable evolution. We also perform the bias calculation where similar segregation is found, but now it is among the quiescent galaxies where a growing evolution with redshift is clearer. These findings clearly corroborate the well known colour-density relation, confirming that quiescent galaxies are mainly located in dark matter halos that are more massive than those typically populated by star-forming galaxies.Comment: 14 pages, 9 figures, accepted by Ap

    Human occupation as a complex system

    Get PDF
    The present work justifies the change in theoretical approach required to use the concepts, principles and methods of artificial intelligence and computational science in order to deal with problems centered in social systems, such as studying the relation between human occupation and social stability and the validation of hypotheses about sociocybernetics strategies applied to governability. In order to model and study human occupation as a complex system, this document describes the autonomous components and the set of behaviors whose simultaneous and concurrent occurrence produce dynamical bifurcations (chaos) and emerging events in the Human Occupation, understood as a complex system between the triad: people - occupations - contexts, which expresses sensitive phenomena, impossible to be known completely and univocally. The components of the occupation are developed conceptually and relations of composition and condition of the given behaviors between these components are established, in order to establish human occupation as a complex system and in such a way that decision making and the prediction of occupational dynamics and behaviors in the individual and social levels can be modeled and simulated

    Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies

    Get PDF
    We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.Comment: 19 pages, 3 figures. V2: Few typos corrected and references added. Matches published version JCAP 02 (2016) 03

    Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes

    Get PDF
    The MAGIC stereoscopic system collected 69 hours of Crab Nebula data between October 2009 and April 2011. Analysis of this data sample using the latest improvements in the MAGIC stereoscopic software provided an unprecedented precision of spectral and night-by-night light curve determination at gamma rays. We derived a differential spectrum with a single instrument from 50 GeV up to almost 30 TeV with 5 bins per energy decade. At low energies, MAGIC results, combined with Fermi-LAT data, show a flat and broad Inverse Compton peak. The overall fit to the data between 1 GeV and 30 TeV is not well described by a log-parabola function. We find that a modified log-parabola function with an exponent of 2.5 instead of 2 provides a good description of the data (χ2=35/26\chi^2=35/26). Using systematic uncertainties of red the MAGIC and Fermi-LAT measurements we determine the position of the Inverse Compton peak to be at (53 ±\pm 3stat + 31syst -13syst) GeV, which is the most precise estimation up to date and is dominated by the systematic effects. There is no hint of the integral flux variability on daily scales at energies above 300 GeV when systematic uncertainties are included in the flux measurement. We consider three state- of-the-art theoretical models to describe the overall spectral energy distribution of the Crab Nebula. The constant B-field model cannot satisfactorily reproduce the VHE spectral measurements presented in this work, having particular difficulty reproducing the broadness of the observed IC peak. Most probably this implies that the assumption of the homogeneity of the magnetic field inside the nebula is incorrect. On the other hand, the time-dependent 1D spectral model provides a good fit of the new VHE results when considering a 80 {\mu}G magnetic field. However, it fails to match the data when including the morphology of the nebula at lower wavelengths.Comment: accepted by JHEAp, 9 pages, 6 figure

    MAGIC observations of MWC 656, the only known Be/BH system

    Get PDF
    Context: MWC 656 has recently been established as the first observationally detected high-mass X-ray binary system containing a Be star and a black hole (BH). The system has been associated with a gamma-ray flaring event detected by the AGILE satellite in July 2010. Aims: Our aim is to evaluate if the MWC 656 gamma-ray emission extends to very high energy (VHE > 100 GeV) gamma rays. Methods. We have observed MWC 656 with the MAGIC telescopes for \sim23 hours during two observation periods: between May and June 2012 and June 2013. During the last period, observations were performed contemporaneously with X-ray (XMM-Newton) and optical (STELLA) instruments. Results: We have not detected the MWC 656 binary system at TeV energies with the MAGIC Telescopes in either of the two campaigns carried out. Upper limits (ULs) to the integral flux above 300 GeV have been set, as well as differential ULs at a level of \sim5% of the Crab Nebula flux. The results obtained from the MAGIC observations do not support persistent emission of very high energy gamma rays from this system at a level of 2.4% the Crab flux.Comment: Accepted for publication in A&A. 5 pages, 2 figures, 2 table

    Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes

    Full text link
    The Crab pulsar is the only astronomical pulsed source detected at very high energy (VHE, E>100GeV) gamma-rays. The emission mechanism of VHE pulsation is not yet fully understood, although several theoretical models have been proposed. In order to test the new models, we measured the light curve and the spectra of the Crab pulsar with high precision by means of deep observations. We analyzed 135 hours of selected MAGIC data taken between 2009 and 2013 in stereoscopic mode. In order to discuss the spectral shape in connection with lower energies, 4.6 years of {\it Fermi}-LAT data were also analyzed. The known two pulses per period were detected with a significance of 8.0σ8.0 \sigma and 12.6σ12.6 \sigma. In addition, significant emission was found between the two pulses with 6.2σ6.2 \sigma. We discovered the bridge emission above 50 GeV between the two main pulses. This emission can not be explained with the existing theories. These data can be used for testing new theoretical models.Comment: 5 pages, 4 figure

    MAGIC detection of short-term variability of the high-peaked BL Lac object 1ES 0806+524

    Get PDF
    The high-frequency-peaked BL Lac (HBL) 1ES 0806+524 (z = 0.138) was discovered in VHE γ\gamma rays in 2008. Until now, the broad-band spectrum of 1ES 0806+524 has been only poorly characterized, in particular at high energies. We analysed multiwavelength observations from γ\gamma rays to radio performed from 2011 January to March, which were triggered by the high activity detected at optical frequencies. These observations constitute the most precise determination of the broad-band emission of 1ES 0806+524 to date. The stereoscopic MAGIC observations yielded a γ\gamma-ray signal above 250 GeV of (3.7±0.7)(3.7 \pm 0.7) per cent of the Crab Nebula flux with a statistical significance of 9.9 σ\sigma. The multiwavelength observations showed significant variability in essentially all energy bands, including a VHE γ\gamma-ray flare that lasted less than one night, which provided unprecedented evidence for short-term variability in 1ES 0806+524. The spectrum of this flare is well described by a power law with a photon index of 2.97±0.292.97 \pm 0.29 between \sim150 GeV and 1 TeV and an integral flux of (9.3±1.9)(9.3 \pm 1.9) per cent of the Crab Nebula flux above 250 GeV. The spectrum during the non-flaring VHE activity is compatible with the only available VHE observation performed in 2008 with VERITAS when the source was in a low optical state. The broad-band spectral energy distribution can be described with a one-zone Synchrotron Self Compton model with parameters typical for HBLs, indicating that 1ES 0806+524 is not substantially different from the HBLs previously detected.Comment: 12 pages, 8 figures, 3 tables, accepted 2015 April 20 for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    LungBEAM: A prospective multicenter study to monitor stage IV NSCLC patients with EGFR mutations using BEAMing technology

    Get PDF
    Objectives: The aim of LungBEAM was to determine the value of a novel epidermal growth factor receptor (EGFR) mutation test in blood based on BEAMing technology to predict disease progression in advanced non-small cell lung cancer (NSCLC) patients treated with first- or second-generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Another goal was to monitor the dynamics of EGFR mutations, as well as to track EGFR exon 20 p.T790M (p.T790M) resistance during treatment, as critical indicators of therapeutic efficacy and patient survival. Methods: Stage IV NSCLC patients with locally confirmed EGFR-TKI sensitizing mutations (ex19del and/or L858R) in biopsy tissue who were candidates to receive first- or second-generation EGFR-TKI as first-line therapy were included. Plasma samples were obtained at baseline and every 4 weeks during treatment until a progression-free survival (PFS) event or until study completion (72-week follow-up). The mutant allele fraction (MAF) was determined for each identified mutation using BEAMing. Results: A total of 68 of the 110 (61.8%) patients experienced a PFS event. Twenty-six patients (23.6%) presented with an emergent p.T790M mutation in plasma at some point during follow-up, preceding radiologic progression with a median of 76 (interquartile ratio: 54–111) days. Disease progression correlated with the appearance of p.T790M in plasma with a hazard ratio (HR) of 1.94 (95% confidence interval [CI], 1.48–2.54; p < 0.001). The HR for progression in patients showing increasing plasma sensitizing mutation levels (positive MAF slope) versus patients showing either decreasing or unchanged plasma mutation levels (negative or null MAF slopes) was 3.85 (95% CI, 2.01–7.36; p < 0.001). Conclusion: Detection and quantification of EGFR mutations in circulating tumor DNA using the highly sensitive BEAMing method should greatly assist in optimizing treatment decisions for advanced NSCLC patients. © 2021 The Authors. Cancer Medicine published by John Wiley & Sons Ltd
    corecore