386 research outputs found

    Comparative proteomic profiling of myofibrillar proteins in dry-cured ham with different proteolysis indices and adhesiveness

    Get PDF
    Excessive proteolysis during dry-cured ham processing may lead to high adhesiveness and consumer dissatisfaction. The aim of this research is to identify biomarkers for proteolysis and adhesiveness. Two hundred biceps femoris porcine muscle samples from Spanish dry-cured ham were firstly evaluated for various physicochemical parameters, including their proteolysis indices and instrumental adhesiveness. Proteins of samples with extreme proteolysis indices were separated by two-dimensional electrophoresis and identified by tandem mass spectrometry (MALDI-TOF/TOF). We found that hams of higher proteolysis index had statistically significant increased adhesiveness. Proteomic analysis revealed statistically significant qualitative and quantitative differences between sample groups. Thus, protein fragments increased remarkably in samples with higher proteolysis index scores. In addition, higher proteolysis index hams showed increased degradation for a total of five non-redundant myofibrillar and sarcoplasmic proteins. However, myosin-1, α-actin and myosin-4 proteins were the biomarkers that underwent the most intense response to proteolysis and adhesiveness.info:eu-repo/semantics/acceptedVersio

    OTELO survey: optimal emission-line flux determination with OSIRIS/GTC

    Get PDF
    Emission-line galaxies are important targets for understanding the chemical evolution of galaxies in the universe. Deep, narrow-band imaging surveys allow to detect and study the flux and the equivalent widths (EW) of the emission line studied. The present work has been developed within the context of the OTELO project, an emission line survey using the Tunable Filters (TF) of OSIRIS, the first generation instrument on the GTC 10.4m telescope located in La Palma, Spain, that will observe through selected atmospheric windows relatively free of sky emission lines. With a total survey area of 0.1 square degrees distributed in different fields, reaching a 5 \sigma depth of 10^-18 erg/cm^2/s and detecting objects of EW < 0.3 A, OTELO will be the deepest emission line survey to date. As part of the OTELO preparatory activities, the objective of this study is to determine the best combination of sampling and full width at half maximum (FWHM) for the OSIRIS tunable filters for deblending H\alpha from [NII] lines by analyzing the flux errors obtained. We simulated the OTELO data by convolving a complete set of synthetic HII galaxies in EW with different widths of the OSIRIS TFs. We estimated relative flux errors of the recovered H\alpha and [NII]6583 lines. We found that, for the red TF, a FWHM of 12 A and a sampling of 5 A is an optimal combination that allow deblending H\alpha from the [NII]6583 line with a flux error lower than 20%. This combination will allow estimating SFRs and metallicities using the H\alpha flux and the N2 method, respectively.Comment: 16 pages, 9 figures. Some authors added. Accepted for publication in PAS

    RASPV: A robotics framework for augmented simulated prosthetic vision

    Get PDF
    One of the main challenges of visual prostheses is to augment the perceived information to improve the experience of its wearers. Given the limited access to implanted patients, in order to facilitate the experimentation of new techniques, this is often evaluated via Simulated Prosthetic Vision (SPV) with sighted people. In this work, we introduce a novel SPV framework and implementation that presents major advantages with respect to previous approaches. First, it is integrated into a robotics framework, which allows us to benefit from a wide range of methods and algorithms from the field (e.g. object recognition, obstacle avoidance, autonomous navigation, deep learning). Second, we go beyond traditional image processing with 3D point clouds processing using an RGB-D camera, allowing us to robustly detect the floor, obstacles and the structure of the scene. Third, it works either with a real camera or in a virtual environment, which gives us endless possibilities for immersive experimentation through a head-mounted display. Fourth, we incorporate a validated temporal phosphene model that replicates time effects into the generation of visual stimuli. Finally, we have proposed, developed and tested several applications within this framework, such as avoiding moving obstacles, providing a general understanding of the scene, staircase detection, helping the subject to navigate an unfamiliar space, and object and person detection. We provide experimental results in real and virtual environments. The code is publicly available at https://www.github.com/aperezyus/RASP

    The OTELO survey. A case study of [O III]4959,5007 emitters at <z> = 0.83

    Full text link
    The OTELO survey is a very deep, blind exploration of a selected region of the Extended Groth Strip and is designed for finding emission-line sources (ELSs). The survey design, observations, data reduction, astrometry, and photometry, as well as the correlation with ancillary data used to obtain a final catalogue, including photo-z estimates and a preliminary selection of ELS, were described in a previous contribution. Here, we aim to determine the main properties and luminosity function (LF) of the [O III] ELS sample of OTELO as a scientific demonstration of its capabilities, advantages, and complementarity with respect to other surveys. The selection and analysis procedures of ELS candidates obtained using tunable filter (TF) pseudo-spectra are described. We performed simulations in the parameter space of the survey to obtain emission-line detection probabilities. Relevant characteristics of [O III] emitters and the LF([O III]), including the main selection biases and uncertainties, are presented. A total of 184 sources were confirmed as [O III] emitters at a mean redshift z=0.83. The minimum detectable line flux and equivalent width (EW) in this ELS sample are \sim5 ×\times 1019^{-19} erg s1^{-1} cm2^{2} and \sim6 \AA, respectively. We are able to constrain the faint-end slope (α=1.03±0.08\alpha = -1.03\pm0.08) of the observed LF([O III]) at z=0.83. This LF reaches values that are approximately ten times lower than those from other surveys. The vast majority (84\%) of the morphologically classified [O III] ELSs are disc-like sources, and 87\% of this sample is comprised of galaxies with stellar masses of M_\star << 1010^{10} M_{\odot}.Comment: v1: 16 pages, 6 figures. Accepted in Astronomy \& Astrophysics. v2: Author added in metadat

    Strategy towards Replacing Pork Backfat with a Linseed Oleogel in Frankfurter Sausages and Its Evaluation on Physicochemical, Nutritional, and Sensory Characteristics

    Get PDF
    Different health institutions from western countries ha–ve recommended a diet higher in polyunsaturated fats, especially of the n-3 family. However, this is not a trivial task, especially for meat-processing sectors. The objective of this work was to assess the influence of replacing pork backfat with linseed oleogel on the main quality parameters of frankfurters. The frankfurters were formulated by the pork backfat replacement of 0% (control), 25% (SF-25), and 50% (SF-50), using a linseed oleogel gelled with beeswax. The determination of quality parameters (pH, colour, chemical composition, and texture parameters), the fatty acid profile, and the sensory evaluation was carried out for each batch. The fatty acid profile was substantially improved, and the saturated fatty acid (SFA) content was reduced from 35.15g/100g in control sausages to 33.95 and 32.34g/100 g in SF-25 and SF-50, respectively, and more balanced ratios n-6/n-3 were achieved. In addition, the sausages with linseed oleogel also decreased the cholesterol content from 25.08 mg/100 g in control sausages to 20.12 and 17.23 mg/100 g in SF-25 and SF-50, respectively. It may therefore be concluded that these innovative meat products are a healthier alternative. However, sensory parameters should be improved in order to increase consumer acceptability, and further research is needed.Artur Martins is the recipient of a fellowship supported by a doctoral advanced training (call NORTE-69-2015-15) funded by the European Social Fund under the scope of Norte2020—Programa Operacional Regional do Norte. Jose M. Lorenzo is a member of the HealthyMeat network, funded by CYTED (ref. 119RT0568). Thanks to GAIN (Axencia Galega de Innovación) for supporting this research (grant number IN607A2019/01)S

    Central star formation and metallicity in CALIFA interacting galaxies

    Full text link
    We use optical integral-field spectroscopic (IFS) data from 103 nearby galaxies at different stages of the merging event, from close pairs to merger remnants provided by the CALIFA survey, to study the impact of the interaction in the specific star formation and oxygen abundance on different galactic scales. To disentangle the effect of the interaction and merger from internal processes, we compared our results with a control sample of 80 non-interacting galaxies. We confirm the moderate enhancement (2-3 times) of specific star formation for interacting galaxies in central regions as reported by previous studies; however, the specific star formation is comparable when observed in extended regions. We find that control and interacting star-forming galaxies have similar oxygen abundances in their central regions, when normalized to their stellar masses. Oxygen abundances of these interacting galaxies seem to decrease compared to the control objects at the large aperture sizes measured in effective radius. Although the enhancement in central star formation and lower metallicities for interacting galaxies have been attributed to tidally induced inflows, our results suggest that other processes such as stellar feedback can contribute to the metal enrichment in interacting galaxies.Comment: 9 pages, 9 figures. Accepted for publication in Astronomy & Astrophysic

    Galaxy classification: deep learning on the OTELO and COSMOS databases

    Get PDF
    Context. The accurate classification of hundreds of thousands of galaxies observed in modern deep surveys is imperative if we want to understand the universe and its evolution. Aims. Here, we report the use of machine learning techniques to classify early- and late-type galaxies in the OTELO and COSMOS databases using optical and infrared photometry and available shape parameters: either the Sersic index or the concentration index. Methods. We used three classification methods for the OTELO database: 1) u-r color separation , 2) linear discriminant analysis using u-r and a shape parameter classification, and 3) a deep neural network using the r magnitude, several colors, and a shape parameter. We analyzed the performance of each method by sample bootstrapping and tested the performance of our neural network architecture using COSMOS data. Results. The accuracy achieved by the deep neural network is greater than that of the other classification methods, and it can also operate with missing data. Our neural network architecture is able to classify both OTELO and COSMOS datasets regardless of small differences in the photometric bands used in each catalog. Conclusions. In this study we show that the use of deep neural networks is a robust method to mine the cataloged dataComment: 20 pages, 10 tables, 14 figures, Astronomy and Astrophysics (in press

    A fundamental plane for field star-forming galaxies

    Full text link
    Star formation rate (SFR), metallicity and stellar mass are within the important parameters of star--forming galaxies that characterize their formation and evolution. They are known to be related to each other at low and high redshift in the mass--metallicity, mass--SFR, and metallicity--SFR relations. In this work we demonstrate the existence of a plane in the 3D space defined by the axes SFR [log(SFR)(M_sun yr^-1)], gas metallicity [12+log(O/H)], and stellar mass [log(M_star/M_sun)] of star-forming galaxies. We used star--forming galaxies from the "main galaxy sample" of the Sloan Digital Sky Survey--Data Release 7 (SDSS-DR7) in the redshift range 0.04 < z < 0.1 and r-magnitudes between 14.5 and 17.77. Metallicities, SFRs, and stellar masses were taken from the Max-Planck-Institute for Astrophysics-John Hopkins University (MPA-JHU) emission line analysis database. From a final sample of 44214 galaxies, we find for the first time a fundamental plane for field galaxies relating the SFR, gas metallicity, and stellar mass for star--forming galaxies in the local universe. One of the applications of this plane would be estimating stellar masses from SFR and metallicity. High redshift data from the literature at redshift ~2.2 and 3.5, do not show evidence for evolution in this fundamental plane.Comment: Accepted for publication in A&A. 4 pages, 4 Figures, and 2 online figure
    corecore