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ABSTRACT One of the main challenges of visual prostheses is to augment the perceived information to
improve the experience of its wearers. Given the limited access to implanted patients, in order to facilitate
the experimentation of new techniques, this is often evaluated via Simulated Prosthetic Vision (SPV) with
sighted people. In this work, we introduce a novel SPV framework and implementation that presents major
advantages with respect to previous approaches. First, it is integrated into a robotics framework, which allows
us to benefit from a wide range of methods and algorithms from the field (e.g. object recognition, obstacle
avoidance, autonomous navigation, deep learning). Second, we go beyond traditional image processing with
3D point clouds processing using an RGB-D camera, allowing us to robustly detect the floor, obstacles and
the structure of the scene. Third, it works either with a real camera or in a virtual environment, which gives us
endless possibilities for immersive experimentation through a head-mounted display. Fourth, we incorporate
a validated temporal phosphene model that replicates time effects into the generation of visual stimuli.
Finally, we have proposed, developed and tested several applications within this framework, such as avoiding
moving obstacles, providing a general understanding of the scene, staircase detection, helping the subject to
navigate an unfamiliar space, and object and person detection. We provide experimental results in real and
virtual environments. The code is publicly available at www.github.com/aperezyus/RASPV

INDEX TERMS Computer vision, navigation, RGB-D, simulated prosthetic vision, visually impaired
assistance.

I. INTRODUCTION
Although traditional tools to assist the visually impaired
such as the cane and the guide dog are robust and cost-
effective, they lack the potential to improve the quality of
life of the patients to a greater extent by taking advantages of
new technologies. Since the 1960s, different research works
have found that electrical stimulation of the visual cortex or
other parts of the visual pathway (such as the retina) caused
patients afflicted by the aforementioned disorders to perceive
bright spots of light called phosphenes. Nowadays, Visual
Prostheses (VPs) are becoming a promising method to treat
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incurable eye disorders such as Age Macular Degeneration
or Retinitis Pigmentosa. VPs generally consist of retinal or
cortical implants that apply electrical stimulation using an
electrode array to generate a grid of phosphenes. As a matter
of fact, experimental results demonstrate that implanted
patients were able to develop coordination using their visual
prosthetic device improving significantly over residual native
vision in spatial-motor tasks [1]. Due to the biological nature
of these systems, the generation of these phosphene visual-
izations is still far from producing fully functional vision,
and there are some problems and limitations to overcome [2],
[3]. For instance, the resolution of the phosphene grid, (i.e.
number of phosphenes) is constrained by biology, technology
and safety, although this is in continuous evolution and
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improving over time [4]. Besides, there are other limitations:
the small field of view (FOV), the low brightness range, and
typical malfunctions such as dropout, noise, or irregularities
in size, shape and color of the phosphenes [5]. In addition,
there are also temporal dynamics involved in phosphene
elicitation: phosphenes are not instantaneously turned on and
off, taking some time to become fully illuminated and fade
out [6].
Despite the steady evolution of VPs, the medical proce-

dures and safety requirements cause that usually years of
experimentation and clinical trials are needed before new
advances reach commercial approval. Although there are
other existing models [7], [8], two commercial prosthetic
vision systems undoubtedly are representative examples of
the two main ways of approaching the whole perception
process and communication via VPs: the Argus II from
Second Sight [9], and the Alpha-IMS from Retina Implant
AG [10], [11]. Both of them, involve more elements than the
retinal implant itself. For example, the typical components
of the Argus II vision system are: a small camera mounted
on the eyeglasses that is used for acquiring images, and
a portable computer to convert the image data into an
electronically coded signal that is transferred to the implant
via wireless communication. On the other hand, Alpha-
IMS uses microphotodiode arrays inside the eyeball to
capture the light and directly transform it into an electronic
signal that is received by the visual prosthesis to elicit
phosphenes. The resolution of the Alpha-IMS is much higher
in comparison (1500 vs 60 phosphenes), but some research
points out that this apparently large numeric distance does not
completely correlate to a significant improvement on visual
acuity and functionality while performing several tasks [2].
The main reason could be that with the Argus II it is
possible to adjust the stimulation variables for each electrode
individually, whereas with theAlpha-IMS the control over the
stimulation is limited [12]. This finding potentially allows a
camera-driven system such as the Argus II to leverage image
processing techniques to enhance the stimulation to display
patterns or highlight features such as edges or obstacles.

Therefore, besides the clinical research on VPs, nowadays
there are important efforts to design and implement algo-
rithms that, despite the limitations of current VPs, manage
to effectively communicate the relevant information in the
environment and assist in daily life tasks [13]. This is the
main focus of our work. The situations where a system
able to augment the relevant information could be useful
are numerous. For instance, when an implanted patient
wants to find and grab a specific object, a camera-based
prosthetic vision system could process the camera feed at
high resolution and highlight the object so it is easier to grab.
Or it could be useful to help a subject to move around in
an unfamiliar environment, possibly with moving obstacles.
A prosthetic device without any enhancement of this sort may
be unable to properly inform the subject correctly, or even
put him at risk in certain situations (e.g. with obstacles or
staircases).

In order to avoid complex and costly trials on real patients,
a non-invasive method to evaluate the efficacy of VPs is
Simulated Prosthetic Vision (SPV). The idea of SPV is to
replicate what subjects with VPs can perceive and represent
it on screens or Head-Mounted Displays (HMD), with the
objective that individuals with healthy vision can take part
in experiments. However, most existing SPV approaches
do not consider more advanced perception devices than
regular cameras, or the simulation of the prosthetic devices
is too rigid and simplified. Besides, temporal dynamics are
usually ignored, which diminishes the realism of experiments
that require real-time interactions. In general, most existing
implementations are too task-specific and specially tailored
to perform a particular experiment, which makes it more
difficult to recycle the framework for new experimentation.

CONTRIBUTIONS
In this work, we present a novel SPV framework that
overcomes several limitations of current systems while being
flexible, realistic and with a modular structure that allows
adding new features over time. An overview is shown in
Fig. 1, which can be used as guiding diagram to follow the
explanations of the manuscript and understand the different
modules and components. RASPV is developed in a robotics
framework, allowing the implementation of algorithms that
work in real-time and making it possible to integrate artificial
intelligence methods from the robotics and computer vision
literature, moving forward towards smart visual prosthesis.

First, the input information of the system is the data
acquired by the sensors, which may come from real or virtual
cameras in simulated environments. Our system can work
both with color and depth cameras, so the acquired infor-
mation is processed with image or point cloud processing
algorithms in order to extract relevant information from the
scene. Then, the result of that processing is transformed
into a visualization that simulates what real patients can
see in our SPV module. It can simulate highly configurable
VPs, with modifiable number and size of phosphenes,
spatial distribution, levels of luminosity, FOV, and also
temporal effects like trails observed in real prostheses,
besides other defects such as noise or dropout. The brightness
of each phosphene is chosen individually depending on the
phosphenic representation mode selected, the available levels
of luminosity, and the temporal phosphene model.

We have developed new smart modes of visualization
that provide semantic and useful information via iconic
representations and augmented reality to assist the subject
in different tasks such as obstacle avoidance, object and
stair detection, scene recognition, or navigation. This final
phosphene image can be visualized with a Head-Mounted
Display (HMD) to make the simulation more immersive and
allow the user to browse the scene with head movements.
The virtual setting allows us to extend the experimentation
and perform more controlled and easily quantifiable tests
in tasks such as guided navigation [14]. Experiments show
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FIGURE 1. Overview of RASPV, including all the main components and modules in different boxes, with the corresponding section in the manuscript
written in red. The user may be performing an experiment in a real environment, with a camera, or in simulation, in a virtual environment where the
user controls a human avatar with a game controller. In either modality, the sensor data comes from an RGB-D camera, which allows us to safely
interact in the 3D environment. The centerpiece of RASPV is the SPV module, which receives the sensor data processed by computer vision algorithms,
and possibly the output of some external robotic modules, to produce phosphene images depending on the selected representation mode. The SPV
module can be configured to reproduce visual prostheses with realistic spatial and temporal models from the literature. We have developed several
new phosphenic representation modes, particularly some that leverage image or point-cloud processing, staircase and object detection, SLAM,
or autonomous navigation to provide informative visual cues to the user in order to assist in certain tasks. The resulting phosphene images are
visualized by the user with a Head Mounted Display during the experiment.

the performance of the method in both real and virtual
configurations. We believe that a modular framework such as
RASPV is a relevant and necessary tool for the community
since it allows other researchers to focus on designing
experiments or novel representations without developing
their own SPV implementation, which is a time-consuming
and complex task. The code is publicly available at
www.github.com/aperezyus/RASPV

II. RELATED WORK
While there is no standard way to implement SPV, Chen et al.
discussed extensively how a standardized simulation should
be and what parameters a good prosthetic vision simulator
should have [15]. Leveraging SPV, we can study what
are the minimum requirements of VPs to perform several
tasks. This is useful for contextualizing current systems and
for analyzing where to focus research on image encoding
techniques [16], [17], [18], [19]. Most of the early work
is based on basic image processing techniques, such as
downsampling [13], which is also the method used in the
Argus II [9]. Given the low resolution and dynamic range of
VPs, thismay not be themost useful and robust representation
in many situations, especially those that involve hazards such
as stairs or risk of collision. There have been other approaches
that use advanced computer vision techniques which can
enhance the semantics and the relevance of the information to
display, developing what we call phosphenic representation
modes to benefit from different visual functions in different
environments [20]. For example, saliency can be used to
highlight the presence of obstacles [21], [22], or image
segmentation to help distinguish classes [23]. Recently, deep
learning has also been used in this field. For example, [24]
combines object mask segmentation with structural edges
from the scene to create a phosphenic image that is used to
evaluate object and room-type identification.

On the other hand, many researchers have used RGB-D
instead of conventional RGB cameras because the additional
depth (D) channel is particularly useful when addressing
mobility and real-world interaction, compared to RGB
cameras that may not be as reliable for detecting obstacles
if they are not salient enough in the image. For example,
McCarthy et al. have proposed RGB-D methods to detect
objects that are threats to collisions or to make them more
salient [25]. With depth information, a neural network is
trained in [26] to detect structural edge information. Thework
of [27] uses RGB-D to provide a sense of depth and motion
while at the same time informing of the presence of obstacles
and the orientation of the scene.

Other works take a different approach and use virtual-
reality-based environments to evaluate the user response with
differentmodels of visual representation [28], [29], [30], [31],
[32]. This procedure allows to try new representations and
perform extensive tests with people in a realistic manner
while reducing the complexity of performing the experiment.
Some of these systems, however, use virtual environments
just to obtain images that are similar to what conventional
cameras can obtain, not allowing to benefit from the usage of
new cameras such as RGB-D [30], [31].

While existing SPV systems are suitable to perform certain
tasks and experiments, they are often unrealistic or lack the
capability to be used in tasks other than the specific trial they
were designed for. Some SPV approaches use over-simplified
visualization of phosphenes (i.e. pixelized [16], [21], rough
circles [17], [18], [19], [22]), or ignore defects such as
dropout or noise [23], [33], which limits the conclusions
drawn by the experimental results.

In a continuous attempt to improve the realism of the
simulations of phosphenes, new spatial [34], [35], tempo-
ral [6], and spatiotemporal [36], [37] models have been
introduced in the last few years based on reports from trials
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with implanted patients. Until very recently, most studies
simulate phosphenes as small, isolated light spots, arranged
regularly in a grid, which has been referred to as Scoreboard
model [35]. The work from Beyeler et al. [35] shows how
the phosphenes are generally perceived as distorted and
elongated shapes, and that this seems to be correlated to
the activation of the electrodes in the axon fibers, which
leads to their proposed Axon Map model. This spatial
model distorts the shapes of phosphenes following the optic
nerve fiber bundles of the subjects recovered from the
ophthalmic fundus image. Thus, these distortions are not
only patient-specific, but also co-related to the electric pulse
parameters. On the other hand, works [6] and [36] introduce
mathematical models to simulate the temporal dynamics of
the phosphene elicitation. However, the introduction of such
complex spatial and temporal models is difficult to apply in
a real-time simulator, particularly considering that if several
electrodes are stimulated at the same time, the behavior of the
electrodes cannot be known simply by linearly combining the
independent phosphene perception of each electrode [35].
The implementation from [38] includes some of these

models, but it only works by offline rendering a single image
or video, taking a long time to process. Additionally, this
implementation is adapted for a VR simulator of prosthetic
vision in [39]. However, it only introduces the spatial model
without temporal dynamics, and the image processing is
mostly reduced to edge detection. Finally, the study [40]
includes temporal effects in a SPV system, however,
it conducts simple reading tasks experiments through virtual
reality glasses. The lack of real-time simulators with temporal
dynamics that work in both real and virtual environments,
facilitating the execution of complex experiments involving
everyday tasks, made us design a way to introduce a validated
temporal model [6] in our framework.

III. RASPV FRAMEWORK
This section thoroughly describes our framework and all
its implemented features (Fig. 1). Particularly, we describe
the communication between modules, the simulation of
the prosthetic vision, the acquisition of information, the
visualization on a Head-Mounted Display (HMD), the
introduction of temporal dynamics, and the usage of some
smart modules developed from robotics and computer vision
state of the art results.

A. COMMUNICATION BETWEEN MODULES
Our system currently has many different modules, and many
more could be added over time. The way we handle the
communication between different modules is using Robot
Operating System (ROS) [41]. ROS is a set of software
libraries especially convenient for managing communication
in robotic tasks. The information flows via messages,
such as the commands to move a robot or the perceptual
information retrieved by it. Since ROS is widely used in
the robotics community, there is a large number of packages
already developed which can be integrated for particular

FIGURE 2. Two phosphene images obtained from RASPV with
approximately 1000 phosphenes, showing the main features and
parameters of our SPV module.

adjacent tasks, such as SLAM (Simultaneous Localization
and Mapping) or autonomous navigation. Using ROS offers
flexibility since one module could be easily substituted by
another without significant changes of the system. It is
programmed in C++ in real-time.

B. SPATIAL SIMULATION OF PHOSPHENES
For our SPV framework, we pursue to create a realistic
simulation of what a patient with VPs can perceive while
keeping the simulation parametrized and flexible to be
easily adapted to existing VPs or future models. A detailed
description of this simulation is included in the Appendix A.
To summarize, the main points considered on the system
configuration of our SPV module are the following:

1) PHOSPHENE APPEARANCE
A phosphene is represented as a circular white dot with a
Gaussian profile so that maximum intensity is reached in
the center and progressively dims as the radius increases.
This kind of representation is widespread in the liter-
ature and is general enough to remove patient-specific
spatial deformations. Nevertheless, given the system’s mod-
ularity, other models could also be implemented [35].
It is possible to elicit phosphenes at different luminosity
levels [15] (Fig. 2).

2) PHOSPHENE MAPPING
Since phosphenes are elicited using a grid of electrodes,
it produces a perception of individual phosphenes spatially
arranged in a regular pattern in the FOV of the patient.
Our configuration parameters are the number of phosphenes
and the map mode, or lattice of the grid depending
on the electrodes (rectangular or hexagonal, see Fig. 2).
Implementation-wise, the black image is automatically filled
with phosphenes arranged according to the map mode
selected and the aspect ratio, which leads us to several
phosphene center positions in the image Pi. The resulting
image is the phosphene image I (Fig. 3).
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FIGURE 3. Projective geometry relating camera and phosphene images,
including the field of view of the prosthesis (FOV ) and the size of the
phosphene (FOVP ) parameters.

3) DEFECTS ON THE MAP
Reports point out that the spatial distribution of phosphenes
is subject to patient-specific deviations. Thus, for the
visualization of phosphenes, we include a drop-out rate
parameter (d), that randomly shuts down phosphenes (i.e.
zero luminosity), and a σ parameter that models the standard
deviation of the position Pi with respect to the computed
mapping (Fig. 2).

4) FIELD OF VIEW AND PHOSPHENE SIZE
The field of view (FOV ) parameter is frequently given for
each visual prosthesis. Particularly, we define a calibration
matrix KP (assuming pin-hole camera model) that, for each
point in the phosphene image (Pi), can be used to trace a
ray ri (Fig. 3) that allows us to enable person-environment
interaction with the 3D world perceived by the cameras.
Similarly, the size of the phosphenes is usually given in arcs
of the field of view (parameter FOVP).

C. ACQUISITION OF INFORMATION
Sensor data may be acquired with real cameras in the real
world or with virtual cameras in a simulated environment.
In order to interact in the environment safely and efficiently,
we propose to use RGB-D cameras as the main sensor
which, besides color images, also provide point clouds
that enable reasoning in the 3D space (Section III-C1).
Next, in Section III-C2, we detail our virtual environment
implementation.

1) IMAGE AND POINT CLOUD PROCESSING
In our problem, a direct encoding between the camera image
and the phosphene image is not adequate since we need to
consider the different FOVs (Fig. 3). For each phosphene
position Pi computed for the phosphene image, we compute
the equivalent phosphene position in the camera image with

PCi = KC · K−1
P · Pi, where Pi and PCi are in homogeneous

coordinates. Note that since the FOV of prosthetic systems
is typically smaller than the FOV of the camera, all PCi will
be inside the camera image. With this approach, we can
implement basic visualization modes that directly encode
image information to phosphenes. The simplest one would
be downsampling: grayscale values in the pixel positions PCi
are proportionally converted to the NL luminosity levels of
our system. Some pre-processing, such as edge detection
or semantic segmentation, could be applied to enhance the
information before encoding. For instance, in [24], both
object detection and layout estimation are used to enhance the
visualization in scene understanding tasks with phosphenes.
Depth measurements from a depth image could be directly
mapped to the NL luminosity levels as well, e.g. making
the values closer to the camera appear brighter to alert of
collisions.

One of our main goals is to overcome the limitations of
existing VPs by performing advanced 3D processing with
point clouds [42] and augment the relevant information of
the scene with iconic representations that do not need to rely
so much on high resolution phosphene images. The basic 3D
features that we represent on the phosphene images can be
reduced to points, lines and planes. For points (and clusters
of points), we directly project 3D coordinates of the 3D
points to the phosphene grid with KP and find the closest
phosphene in the image. Similarly, lines are projected onto
the image plane and phosphenes within a pixel distance to
the line are selected. For planes, we intersect the rays from
each phosphene ri with the 3D plane to obtain the intersection
point.

Estimating the ground plane (i.e. gravity direction and
distance to ground) is essential for many applications dis-
cussed in this work since it helps to orient and contextualize
the subject in the scene. After a planar segmentation [42],
we choose the most likely ground plane out of the segmented
planes in the scene, considering size, distance to the camera,
and orientation. The transformation CTF is then computed
by aligning the y axis of the new reference frame F with the
ground plane normal nf (Fig. 4). Additionally, the remaining
two Manhattan World directions [43] can be recovered
considering the best alignment with the normals of the rest
of the scene, following [44].

2) VIRTUAL ENVIRONMENT
Using simulated environments for SPV experimentation is
important to reduce costs and risks, as well as to sim-
plify some real-world implementation difficulties, allowing
researchers to focus on the parts that actually need evaluation.
It also allows us to systematically perform experiments in
equal conditions to a wider range of subjects, with accurate
measurements of all actions performed during the test. In our
system, we can recover the pose of the subject at all times
and thus have a clear understanding of the trajectory, the
time that takes the subject to perform some task, as well
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FIGURE 4. Visual example of the main elements that take part in the 3D
processing of point clouds carried out in the Minimal iconic
representations and Stair detection.

as gathering other task-specific data such as counting the
number of collisions during a mobility-related experiment.

For our framework, we use Gazebo [45], a robotics
simulator that includes realistic robot and sensor models that
were designed to test algorithm implementations. Combining
ROS with Gazebo is perfectly suitable for our needs: we can
use a simulated RGB-D camera in Gazebo (e.g. an AsusXtion
Pro Live), and pass the information captured in the virtual
environment to our perception module using the message
system from ROS. The same SPV implementation would be
compatible straight away when a real camera is used instead
of a Gazebo simulation since they use the same type of ROS
messages.

In Gazebo, it is possible to create worlds by adding
elements that also have physical properties (i.e. mass, inertia,
collisions). It is possible as well to import complex models
of buildings and objects made with other software (such as
Sweet Home 3D [46], see Fig. 1), which allow us to propose
enough variety for our experiments, something very costly in
the real world.

In order to move and interact inside the virtual envi-
ronment, we have implemented a new robot model called
BlindBot, based on Turtlebot, that simulates a human subject.
The robot’s base includes two wheels and differential drive
movement, as well as several sensors such as bumpers (to
detect collisions) and an RGB-D camera (Asus Xtion Pro
Live or an Intel RealSense R200). We included a human
model and placed the RGB-D camera at the eyes position,
replicating the idea of the glasses-mounted camera of real
systems (see Fig. 1). Regarding the user interface, controlling
the robot’s movement can be done with either a game
controller or a keyboard, allowing to turn the base and to
move forwards and backwards (or combine both), as well as
to change linear or angular velocities. To make the robot’s
movements more realistic, we added some additional joints
between the camera link and the base link to make it possible
to change the view frame similarly to what humans do
when moving the head. This allows to decouple the view

from the movement of the whole robot which allows to
explore the scenes more naturally. In particular, we add three
cylindrical joints corresponding to roll-pitch-yaw angles. It is
also relevant to mention that it is possible to recover the pose
of the robot with respect to the virtual world reference frame
(Fig. 1) so that we do not need to use any localization method
or any ground plane extraction algorithm.

D. SIMULATION OF TEMPORAL DYNAMICS
Previous studies have shown that retinal ganglion cell
stimulation produces visual percepts consisting of an initial
brightening and subsequent fading until phosphenes are
turned off [47]. Therefore, in order tomake the SPV system as
realistic as possible, it is important to integrate these temporal
effects described in the literature by prosthesis users. This
will not only allow us to study their impact on performing
several tasks, but also to propose palliative strategies to such
effects considering a human-in-the-loop scheme, as in [40].
Usually, temporal dynamics are disregarded in related

works due to the difficulties of introducing them into
a real-time implementation. However, there are validated
existing models based on experiments with real patients that
can be used to simulate the phosphene illumination over
time. We choose to use the temporal model of [6], for its
consistency with the biological nature of neural systems, and
because this model has been used in other works such as [37]
to describe the appearance of phosphenes. Our approach
could be extended to other similar models as well [36].

Experiments from [6] reveal that the response time of
the visual stimulus is about 200 ms, much larger than the
temporal changes that vision is able to perceive (roughly
20 ms). Using their mathematical model, we can simulate
the illumination dynamics of each individual phosphene
depending on the input electric signal (e.g. pulses, train of
pulses). In order to choose realistic simulation parameters,
we use the average patient-specific parameters from [6], and
the same type of electrical stimulus as with Retina Implant
AG’s Alpha-AMS implant (i.e. biphasic pulses). For each
input pulse, the model outputs a signal representing the
illumination level of the phosphene over time: it illuminates
fairly fast, but the decay of the pulse is slower and generates a
visual trail sensation. However, if several pulses are produced
in a row, the behavior is not linear and requires expensive
calculations at a very small sampling time with respect to the
working frequencies, particularly considering these dynamics
need to be implemented in a simulator that works in discrete
time.

In order to implement it in real-time, we propose
a discretized temporal perception model that stores the
pre-computed luminosity value of the phosphene according
to the information obtained in previous instants (Fig. 5).
First, the illumination results have been computed using
the continuous perception model from [6] for all possible
combinations that may have occurred in the current frame
and the previous frames. The input stimuli are computed
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FIGURE 5. General scheme of the Discretized temporal perception model
implemented in RASPV. For each phosphene, we take the input signal
sequence from the current and previous 9 frames, which consists of
biphasic pulses or no pulses regarding the output of the visualization
mode (in the figure, binarization of a stool). The continuous model [6]
predicts the percept signal and, particularly, the current luminosity to
show in SPV at this time instant. In order to make this problem feasible in
real-time, we have pre-computed all possible combinations of input
stimuli in a Look-Up Table.

FIGURE 6. Output of the temporary model of the stool moving to the right.

for each phosphene depending on the output of the visual
representation module so that a biphasic pulse happens if
this module outputs 1 for the pixel corresponding to that
phosphene position (e.g. a binarized image that highlights
some object). Alternatively, no pulse happens at that time
instant if the module outputs 0 in that pixel. The final
illumination values for each pulse combination are stored in a
Look-Up Table whose input index is a sequence of ones and
zeros depending on the current and previous frames. Once
this information is computed for all possible combinations,
the maximum value obtained will have the maximum
brightness value and the rest will be scaled according to this
maximum. This pre-computation of phosphene illuminations
with respect to current and past stimuli allows us to run the
temporal model in real-time, covering all plausible stimuli
combinations in a 200 ms time-frame. The result of applying
the above discrete model to a binarized image of a stool
moving to the right is shown in Fig. 6.

E. VISUALIZATION WITH A HEAD-MOUNTED DISPLAY
A head-mounted display (HMD) can be used along our SPV
module to test the phosphene visualization in an immersive

FIGURE 7. In the HMD, images corresponding to the left and right eye are
projected on the display. The particular aspheric-distortion strategy used
for an adequate focus of the image produces color artifacts when using
white phosphenes (a), avoided when using a single color channel (b).

experience. In particular, we use an Oculus Rift DK2,
which estimates the head’s orientation based on an Inertial
Measurement Unit (IMU). There are differences between the
representation used on the screen and the one used in the
HMD. The HMD uses a set of aspheric lenses to correctly
focus the displayed image at such a short distance to the user’s
eyes. As a result of that, the image is distorted to compensate
the barrel effect. We realized that the Bayer color pattern is
not perfectly mapped by the lenses and, as a consequence, it is
not possible to represent white phosphenes in the periphery
of the image without color artifacts (Fig. 7a). Since color
is unimportant in a phosphene representation, we use a
single color channel in the head-mounted representation.
In particular, we use the green channel, which has the highest
resolution in the Bayer pattern (Fig. 7b).
In order to connect the HMD to our system, our current

implementation uses two separate computers connected via
a socket. The server performs all computations of RASPV,
whereas the client has the HMD connected and performs
two main tasks: receive the phosphenic representation to
be shown in the display, and send the 3D orientation of
the HMD to Gazebo in order to move the camera in the
BlindBot model. The communications have been handled
with a ROS node that sends the angles from the IMU to
the Gazebo model and the camera moves right away without
significant lag. Therefore, the subject can move the head
naturally during the experiments while using the controller
to navigate. This implementation is fast enough for real-time
(communication takes less than 100 ms), and since most
powerful computations are performed in the server, a more
lightweight processing unit could be used to connect the
HMD to improve portability.

F. EXTERNAL ROBOTIC MODULES
One of the advantages of using ROS to centralize the
communication among modules is that we can re-purpose
packages from the robotics field into our framework. Here,
the most relevant ones are described:

1) STAIR DETECTION
Stairs can be a dangerous structure for the visually impaired,
being a potential source of accidents. Here, we use themethod
proposed in [44] and [48], which uses RGB-D cameras and
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FIGURE 8. The navigation module computes the shortest path towards a
predetermined goal (in the figure, a door passage). The path is computed
considering a known 2D map of the building (which introduces a global
costmap) and the point cloud from the RGB-D camera (which we use to
detect obstacles and dynamically update the local costmap and thus the
shortest path to reach the goal). In this figure, we can observe that the
path (in green) is curved to avoid collision with a walking person.

thus is straightforward to integrate into our system. This
method recovers the pose of the stair with respect to the
camera (CTS ) and the measurements of every step, therefore
providing the complete stair model (Fig. 4), useful not only
to alert the subject but also for guidance.

2) SLAM
Many applications require to keep track of the followed
path to be able to come back to a particular place, for
example to reach a relevant instance previously detected.
Sometimes, it is necessary to know the subject’s position
on the map in order to give proper indications to reach a
destination. To handle these problems, we have used a SLAM
(Simultaneous Localization and Mapping) method that is
compatible with ROS and RGB-D cameras [49]. It allows us
to know our relative position with respect to the initial frame
since it keeps the system localized in a map while it is being
built online. Besides, if the environment has been previously
mapped, it is possible to launch in localization mode, which
returns the absolute position of the subject in the map.

3) AUTONOMOUS NAVIGATION
The objective of a navigation system is to find a path from
a starting point to a goal point. This is one of the most
obvious tasks for visually impaired assistance, and has been
extensively studied in the past [50]. Such a task involves
perception, path-planning, and collision avoidance. We used
the standard ROS navigation package [41]. In our framework,
the global path-planner is based on the A* algorithms, which
provide the shortest distance trajectory from a starting point to
a goal destination given a knownmap or a building floor plan.
There is also a local planning based on Dynamic Window
Approach (DWA) [51] that provides obstacle avoidance by
computing the optimal collision-free velocity. Two costmaps
are used by the path-planner: the global path-planner uses

a costmap based on the map of the environment, and the
local planner updates a dynamic costmap using the depth
information. Both costmaps are grids in which a cost is
assigned depending on the obstacle size and distance. Fig. 8
shows an example of the local and global costmaps with
the corresponding computed path. In our system, we only
need the camera to solve localization (using SLAM) and
obstacle avoidance, not needing any other external devices
like a cane [52] or wearables [53].

4) SEMANTIC SEGMENTATION
One of the most useful ways to assist a visually impaired
with computer vision is via object detection/recognition.
We propose to use deep learning-based semantic segmen-
tation approaches since they allow us to recognize objects
of interest and locate them in the image in order to
highlight them and help the user, for example, to reach
and grasp the object. We developed a ROS node that
launches a Pytorch implementation of a pre-trained semantic
segmentation network DilatedNet [54], [55]. Particularly,
the architecture using Resnet50Dilated as the encoder and
PPM deepsup as the decoder. It was trained in the ADE20K
dataset [56], [57], [58], which contains 150 object classes,
achieving a good balance in accuracy and running time when
adjusted to 3 iterations (about 0.25 s per frame including node
communications).

IV. AUGMENTED REPRESENTATION MODES
The different modules of RASPV described in Section III
serve as foundation to design new phosphenic visualization
modes that allow the patients to retrieve more information
from the visual prosthesis, considering their strong limita-
tions. Then, to test the effectiveness of the methods, the
next step would be to perform experiments with sighted
people, which would allow us to extract conclusions about
the validity of said modes. In this work, our main motivation
lies mostly on mobility-related issues, i.e. to provide helpful
information to move safely, efficiently and purposely, for
instance, by providing depth and motion cues, orientation,
the path to follow, or even some rough understanding on the
scene. Having depth information is particularly useful in this
context since it allows us to have structural information of
the environment, including walls, floor, obstacles, and other
particular instances, such as stairs.

Nevertheless, we cannot lose focus on the fact that the
perception with visual prosthesis has severe limitations.
Therefore, our proposed representations attempt to be min-
imal (just using two or three levels of phosphene brightness)
and based on iconic and easily recognizable cues. Besides,
to convey additional information such as the presence of
staircases, objects, or a path to follow, we propose to
use augmented reality-based representations that highlight
and superimpose the additional useful information over the
current visualization mode. In the next sections, we show
our main proposals as well as some results in virtual and
real environments. The video attached to this submission as
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supplementary material shows some of these results in real
sequences.

A. MINIMAL ICONIC REPRESENTATIONS
Basic representations such as downsampling or direct
depth-mapping may not be effective or safe enough given
the limitations of the VPs. Here, we propose minimal iconic
representations that leverage information recovered from
point clouds and try to represent the scene so that basic
structures and elements can be easily recognized. The aim
of these iconic representations is to transmit confidence to
the user so that it can move around the environment avoiding
collisions while providing additional informative cues. The
two main minimal iconic representations implemented in
RASPV are Chess-Floor (first introduced in [27]) and Wall-
Obstacles:

1) CHESS-FLOOR
The idea of this minimal representation is to bring a sense
of depth, orientation and movement using as few luminosity
levels as possible. Inspired by old low resolution video-
games, we propose to add texture to the ground, particularly
with black and white squares (like a chessboard), which can
be implemented in phosphene representation with gray and
white phosphenes. The SLAM module allows the user to
move freely while the texture remains fixed on the floor to
effectively transmit the depth and motion cues. Additionally,
the texture can be set to match the orientation of the scene
by recovering the three main directions [43]. To enhance the
iconic representation, we also propose to display the textured
floor only in obstacle-free areas, so that it simultaneously
serves as an obstacle avoidance system. This can be achieved
with an RGB-D camera, since from the point clouds it is
possible to detect shapes and surfaces that could block the
user’s movement. By turning the ground phosphenes off
where the obstacles are detected with the RGB-D camera, the
representation allows for safe and comfortable navigation. In
Fig. 4 we show a visual example of a scene with the chess
polygon drawn inside the obstacle-free area in front of the
subject.

2) WALL-OBSTACLES
The goal of this representation is to assist in navigation tasks
by roughly displaying the main elements on the scene (e.g.
planes, objects). With the point clouds from the RGB-D
camera, we can segment the scene in planes (by applying
region-growingmethods) and clusters of points (by Euclidean
cluster extraction) [42]. The planes orthogonal to the ground
are classified tentatively as walls (e.g. yellow planes in
Fig. 4). In the phosphene image, the wall planes are shown in
gray, and may be useful to detect the boundaries of the room
or big furniture. Alternatively, horizontal planes (e.g. blue
plane in Fig. 4) and clusters of points (which may account
for non-planar instances, e.g. red points in Fig. 4) are shown
in white, to highlight them over the background. The floor
remains black with turned off phosphenes, so that all the

FIGURE 9. Sample frames of different phosphenic representations
obtained from a sequence in a virtual environment. Our proposed
minimal iconic representations (Chess-Floor and Wall-Obstacles) are
compared to basic image processing alternatives (i.e. grayscale
downsampling, and depth scaling), showing that we can convey relevant
information for mobility with just a few levels of luminosity.

objects and planes, which may be additional hazards, are
more easily identifiable.

In order to show the effectiveness of our minimal iconic
representations, we compare them with other basic methods
that directly process RGB and depth images. In Fig. 9 we
show four frames of a sequence, where the BlindBot walks
through a corridor and finally enters the living room. At the
top, we show the RGB images with the positions of the
phosphenes in green circles. Notice that we are simulating
a prosthesis with large FOV (around 47◦) in order to improve
the visibility of the figures. In successive rows, we show all
the representations.

The Chess-Floor representation is able to transmit a sense
of depth and movement inside the scene thanks to the
checkerboard pattern. Since it only draws walkable areas, it is
easy not to crash with any obstacle and it shows when the
floor extends in new rooms, as we can see in the first frame
of Fig. 9. Nevertheless, it is not very informative once we are
in the room we intend to be, since it does not show any of
the objects. In contrast, Wall-Obstacles representation is able
to convey a rough understanding of the scene and allows to
distinguish some objects, although relies on the subject’s own
memory and ability to navigate to prevent collisions.

On the other hand, the basic representations have some
limitations regarding mobility. For example, downsampling
has the huge limitation of being unable to distinguish between
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different instances with similar gray levels, which may result
in trouble detecting hazards and obstacles. Depth information
seems to work reasonably well in that regard since it is
directly translating the proximity of every pixel to the subject.
Nevertheless, we take into account that these images are
taken in simulation, and, therefore, the depth perception has
perfect accuracy, without noise or missing pixels as happens
in real life. Considering real cases of VPs with limitations
such as noise and dropout, the basic representations may turn
extremely confusing, whereas a more rough approach such
as our iconic representations could be more robust to such
occurrences.

We have also evaluated the Chess-Floor representation in
real settings. We have recorded several sequences of indoor
environments, and run our algorithm. For these experiments,
we have used the visual odometry method from [59].We have
recorded two sequences, corridor and office, whose videos
can be found in the supplementary video.

B. STAIRS DETECTION
Stairways are structures that are common to all human-made
scenes, but also a potential risk of accidents. Therefore,
it is important for users to detect them in the environment.
To display stairs in RASPV, when an instance of a staircase
is detected, the segments of the 3D wireframe model of
the staircase (e.g. pink lines in Fig. 4) are projected to the
phosphene view. To highlight the presence of the staircase
in the view of the subject, we apply maximum luminosity
to the lines of the stair, and dim the luminosity of the
rest of phosphenes. Therefore, the stairs detection module
works as augmented reality, and it is complementary to any
representation mode. The goal of this implementation is to
make a method to alert the user of hazards, but also to be
informative about the presence of staircases regardless of the
visualization mode currently selected.

We have included staircases in a Gazebo map and run our
implementation with different representations. In Fig. 10 we
show two examples, with an ascending and a descending
staircase, respectively. Our method clearly highlights the
presence of staircases, even pointing out the surface of the
step where the subject can step on. Since the rest of the image
is dimmed in intensity, the stair is easy to detect. In the case
of the downsampling representation, it happens often that the
color difference between the floor and the steps is very small,
and thus the risk of having an accident is high. Having the
stair detector and stair augmentation active, reduces such risk
since it alerts with enough time.

For the stairs detection in real settings, we tested several
sequences provided by [44] (Fig. 11). In the first example,
we can see how the system is able to inform the subject of the
presence of both ascending and descending staircases from a
large distance, also recovering the full pose and thus enabling
the possibility of guiding the user to face the staircase straight
or close to the handrails. The second example shows the
user approaching the ascending staircase and up to four steps

FIGURE 10. The stair detection and augmentation method from RASPV
are shown in two frames with, respectively, an ascending and descending
stair. For each frame, the point cloud with the resulting staircase
from [44] is shown on the left, with the corresponding RGB image and the
field of view of the simulated prosthetic device marked in green. On the
right, the phosphenic visualization of those frames with and without the
stair augmentation. Results are shown with two representations as well:
Chess-Floor [27] and downsampling.

FIGURE 11. Two frames from a sequence with stairs, where we show our
stairs detection application included in RASPV. On the left, point cloud
with 3D staircase model overlayed. On the right, the corresponding SPV
image.

correspondingly shown in the phosphene visualization. Aswe
can see with real images, this system could help prevent
subjects from having an accident but also be very helpful to
efficiently traverse a building.

C. NAVIGATION ASSISTANCE
As mentioned above, it is crucial for users to navigate
autonomously in the environment. Therefore, we propose this
augmented mode, which highlights the path, to assist users
with VP in reaching their destination in unfamiliar settings,
such as public spaces (e.g. hospitals, stations, shopping
malls). To represent the path returned by the navigation
module (presented in Section III-F) in the phosphene image,
we project the path as a set of 3D line segments. To avoid
confusion or information overload, only the current visible
path is shown, since we can use depth information from the
camera to hide occluded segments of the path.

For the navigation experiments, we have created several
virtual environments that include conventional elements such
as tables, doors or human beings. The 2D map used for
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FIGURE 12. This experiment shows a sequence where the subject is
asked to find a bin in order to dispose of some garbage. On the first row,
the navigation assistant with all the elements as shown in Fig. 8. On the
bottom row, the corresponding view from the SPV module presented in
this work.

navigation only marks the occupancy of the structural and
permanent elements in the scene (e.g. floor plan of the
building), and the rest of the elements (obstacles) will be
dynamically recovered by the navigation assistant, and can
be easily obtained with the RGB-D camera given the pose
is known in Gazebo. In Fig. 12 we show four frames of a
sequence where the subject is asked to navigate towards a
goal. As we can observe, initially the subject is only able
to perceive a person in front of him. Since the trajectory is
overlayed on the ground, like an augmented reality navigation
assistant, the subject just needs to find the path and follow
the trail. The obstacles are detected and informed to the
navigation assistant, which steers the subject away from
them, while at the same time keeping the shortest possible
path. It is important to notice that the FOV of the camera is
typically larger than the FOV of the VP, so the path is safe
enough to follow and avoid any collision.

For the real world experiment, we have recorded a long
sequence inside a building previously mapped with a 2D
laser scan. However, for the navigation, it is necessary to
have the current location of the subject at all times. Since
the 2D building map provided was captured from another
type of sensor, it is not possible to directly localize using
the information from the head-mounted RGB-D camera.
Therefore, we proceeded in two steps: First, mapping with
the RGB-D SLAM method from [49], and then running
the method in localization mode to get the absolute pose.
Between both operations, wemanually aligned the 3D feature
map to the 2D building map provided, so that the position
of the subject on the map can be recovered and included in
the navigation assistant. In Fig. 13 we show several frames
from our experiment. Notice that the representation mode
chosen does not draw phosphenes in the floor, which makes
a perfect pairing with this navigation assistant. The longer
sequence is also included as supplementary material in the
form of a video. We also show an additional experiment with
dynamic objects such as a person walking by. There we can
see how the path changes as the obstacle is detected and
then recalculates again when the obstacle disappears, always
keeping the shortest possible path. Notice that the subject is

FIGURE 13. Several frames from the sequence in a real environment,
where we show the SPV image with an augmentation mode that overlays
the guiding path over a representation that only shows vertical planes in
gray and horizontal planes and clusters of points in white (right). For the
navigation, we use a SLAM system [49] (left, feature points in green).
At the center, we show the navigation information.

FIGURE 14. From left to right: RGB image with the green grid showing the
phosphene positions. Prediction of the semantic segmentation network.
Phosphene map with downsampling mode. Phosphene map with our
object detection active, highlighting the location of the desired object.

also moving towards the goal, increasing the complexity of
the sequence even more.

D. OBJECT AND HUMAN DETECTION
Sometimes, so much information in the scene may be
confusing, making the recognition of objects a challenging
task. For this reason, we have also implemented visualiza-
tion modes to convey semantic information to the users.
In particular, we also take an augmented reality approach,
where we highlight the objects of interest in the scene with
the predicted segmentation mask (see Semantic segmentation
module in Section III-F) by simply setting the corresponding
phosphenes to the maximum level of luminosity, dimming
the rest of the image. In Fig. 14 we show an example,
where the object of interest is a laptop, and the background
representation mode is downsampling. Notice that, when the
object detection mode is active, the object can be precisely
located and it would help the subject to reach it and grab it,
which is not so obvious with the background representation.
Only one object is chosen to be highlighted in this case in
order to not overwhelm the subject. The object classes to
highlight can be adjusted to the necessities of the task.

In Fig. 15 we show some results where, in this case,
the desired instance to highlight is a human, also using
the semantic segmentation network from before. Here, the
temporal dynamics are also active, and it can be observed
how the phosphenes take some time to illuminate and
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FIGURE 15. Several frames when turning with object detection mode
active (here, highlighting a person). Each row represents, respectively:
RGB image, segmentation mask, object detection mode without temporal
effects, and object detection with temporal dynamics. The temporal
dynamics are being simulated with our discretized temporal perception
model, which translates to visual trails.

fade out, leaving some trailing effect in the visualization.
In the supplementary video, some more examples have been
included with the HMD running in the simulator.

V. CONCLUSION AND FUTURE WORK
In this work, we have proposed a novel framework for
Simulated Prosthetic Vision developed in an open-source
robotics framework that enables real-time performance and
integration with external robotics and computer vision
algorithms. It provides an easily customizable spatial and
temporal model based on the state of the art that simulates
what is perceived with a visual prosthesis. The input data
comes either from a real RGB-D camera and also from a
virtual environment. Using a real camera set-up allows us to
validate the feasibility of the different algorithms, considering
the technical complexity and real-time restrictions of a
real prototype. On the other hand, the option of virtual
immersive environments facilitates systematic and repeatable
experiments of SPV for the evaluation of different phosphenic
representation modes with statistical meaning. Here, we also
present several visualization mode proposals, using obstacle
detection, ground-plane detection, stairs and object detection,
SLAM, and path planning with global and reactive naviga-
tion, providing a set of new augmented representations of
scenes, staircases, objects and obstacle-free guidance path.

Despite the complexity of the developed system, there
are limitations to be addressed in future work, that would
improve the usefulness of our SPV system. The realism
of the SPV system could be improved following works
such as [38], by introducing new spatial [35] and temporal
models [40], [60]. Furthermore, user interaction with the

SPV system is limited to head movements and the gamepad.
Adding touch-based interactions could enhance the patient
experience. In addition, integrating multimodal feedback to
the user (e.g. in the form of audio) has proven to be effective
in other applications for visually impaired people.

The main objective of this study is to achieve a realistic
SPV system that allows to draw conclusions extensible
to real visual prostheses, and to share the code with the
whole community so that researchers can use it to carry
out their own designed experiments. Although RASPV has
already been used for evaluating the navigation module [14],
obtaining conclusions from experiments with healthy sighted
people, there is still many other possible ways to utilize
the proposed system to obtain more clinically meaningful
conclusions with statistical significance. In the future,
more experiments involving the augmented representation
modes presented in this article could evaluate their actual
usefulness. For instance, temporal dynamics could be studied
by performing similar experiments to those presented in [40].
These experiments measure the influence of temporal effects,
including, in our case, a virtual or real environment allowing
the subject to look around using virtual reality glasses.
Furthermore, following the study of [32], researchers can
assess the influence of various parameters of the visual
prosthesis using a more realistic simulator, in order to
enhance the design of existing ones.

APPENDIX A PHOSPHENE MAPS IN DETAIL
In this appendix, we intend to describe thoroughly the
implementation of the simulation of phosphenes of our SPV
module, particularly the spatial model we have included
in our framework. To represent the output phosphene
visualization, first we consider that the entire visual field of
the prosthetic device is representedwith a 2D image I ofw×h
pixels, where initially all pixel values are set to 0 (i.e. entirely
black). The phosphenes, whose appearance is described
in Section A-A, will be inserted at specific locations
of the visual field corresponding to the pixel locations
from the phosphene map that is created depending on the
specifications of the system (Section A-B). Some typical
malfunctions we have considered in our implementation are
commented in Section A-C. Finally, we talk about how the
phosphene image I maps the visual field is dealt with in
Section A-D.

A. PHOSPHENE APPEARANCE
The most widespread description of the visual perception of
a phosphene in the literature is similar to a small, round and
colored spot of light in the visual field [15]. However, there
are studies that show that it is not as simple as that, since
theremight be variations in shape (e.g. doughnut-shaped [61],
elongated [62]), or even color (e.g. yellow or blue [61]). Some
more recent studies correlate spatial deformations with the
nerve fiber bundles of the subject, and the parameters of the
electric signal [35]. Nevertheless, these possible variations in
shape are difficult to predict and highly patient-specific, and
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FIGURE 16. Visualization of the phosphene sprites that would compose
the phosphene image. In this case, the number of luminosity levels is NL =
8. The last sprite, SNL

= S7, is the sprite of reference Sr . The other sprites
at i -th position are created by multiplying each pixel value by i/(NL − 1).

the perceived shape of the phosphenes cannot be purposely
elicited [63] and thus use it to improve representations.
Therefore, in our framework, we decided to adopt the most
widespread and patient-agnostic phosphene representation,
consisting in a round spot of light. Regarding color, white
(colorless) seems to be the most common description [61],
with no evidence of control over that parameter [15], which
is also our color of choice.

We call phosphene sprite to the visual representation of
a single phosphene, which will be the smallest and more
basic element in the whole representation. We adopt the term
sprite from computer graphics, meaning ‘‘a 2D bitmap that
is inserted in a larger image’’, which mimics well how we
operate with phosphenes in our framework. For representing
the phosphenes, we create a reference phosphene sprite Sr as
a small image representing the desired visual representation,
i.e. a round white spot of light. To make the phosphene sprites
more realistic-looking, a two-dimensional Gaussian profile
is often used [64] so that the center represents maximum
intensity and smoothly dims down its value as the radius
increases. Besides, the usage of Gaussian profiles allows to
seamlessly address overlap and fuse two adjacent phosphenes
by simply summing the pixel values.

While features such as color and shape are not con-
trollable by the prosthetic device, it has been reported
that increasing the current through the particular electrode
elicits a phosphene of higher intensity or larger size, often
correlated [15], [61], [63]. To model this characteristic in our
system, we use the parameter NL to determine the number
of discrete levels L of luminance and size. We generate a
set S of NL phosphene sprites, S = {S0, .., SNL−1}, which
are computed based on a reference sprite Sr . The reference
sprite is a prototypical phosphene of maximum intensity (the
center of the Gaussian of maximum value, e.g. 255 for 8-bit
images) and size (see Section A-D). The elements Si ∈ S
are computed as Si =

i
Nl−1 · Sr , so that the sprite S0 will

be all zero (thus black, like a shutdown phosphene) and the
last sprite in the set SNL−1 = Sr . In-between sprites adopt
intermediate (gray) values, simultaneously reducing size and
maximum intensity from SNL−1 to S0. In Fig. 16 some sample
sprites with NL = 8 are shown.

The number of levels NL is a parameter of the system.
Previous works suggest as a good approximation using 8-16
levels of intensity [15], and we use 8 as default. Nevertheless,
it is not clear how feasible it is to actually be able to
accurately recognize modulations of intensity. Since it could

be hard to discern among adjacent levels, our proposed
representations are designed to use as few levels as possible,
using instead iconic representations to provide informative
perception without relying too much on having high NL .

B. PHOSPHENE MAP
We use the term phosphene map to refer to the spatial
distribution of the group of individual phosphenes as
displayed in the field of view of the patient. Clinical
and biological proofs indicate that phosphene patterns are
irregular and patient-specific [65], [66]. Reports have shown
that the position of phosphenes in the visual field mostly
correlates with the expected region stimulated, especially in
retinal implants [61]. While the distribution of phosphenes
is always irregular (with almost unrecognizable lattices
in cortical implants), in retinal implants the locations are
generally consistent with the position of the electrodes
in the retina, and thus considering regular distributions is
reasonable from a practical standpoint. To provide more
realistic output, stochastic jitter offsets should be applied to
the exact pixel positions of the phosphenes [15] (more on that
in Section A-C).
In the literature, for optical prosthetic devices, the most

common phosphene map distributions are rectangular and
hexagonal (notice that, in other kinds of prosthetic systems,
e.g. cochlear, the distributions may be very different).
According to [67], a hexagonal map allows a more compact
structure and thus, higher density, a desirable property
in prosthetic vision. The phosphene mapping consists in
computing the pixel positions Pi = (xi, yi) in the phosphene
image I where the sprites S will be located depending on the
specifications of the prosthetic system. We have to take into
account the following parameters: the number of phosphenes
(NP), the mode of distribution (rectangular or hexagonal) and
the size of the image (w, h). Notice that the aspect ratio of
the visualization is given by the size of the image w× h. For
example, Argus II has a phosphene distribution of 10 × 6.
Thus, we would choose a value of h = 6/10 ·w for the image
I.

Initially, we assume a rectangular grid occupying thewhole
image and then add variants to the map. To construct the
phosphene map, first, we compute the separation δ (in pixels)
between the center of consecutive phosphenes (vertically and
horizontally). To compute that δ value in the initial case:

δ =

⌊√
w · h
NP

⌋
(1)

where ⌊·⌋ means floor operation. We can observe an example
of this case at Fig. 17a.

The separation between phosphenes vertically and hori-
zontally can be set differently as δx and δy, and consider in
this particular case that we chose δx = δy. For hexagonal
grids, by its definition, δy =

√
3/2 · δx . The deltas are then
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FIGURE 17. Examples of phosphene maps inspired by Argus II (above,
with NP = 60 phosphenes) and Alpha-IMS (below, with
NP = 1500 phosphenes): (a) Rectangular map. (b) Hexagonal map.
(c) Rectangular visual field. (d) Circular visual field.

computed as:

δx =

√
w · h · 2/

√
3

NP

 , δy =

⌊√
3/2 · δx

⌋
(2)

In this case, every other row is displaced to the right
δx/2 pixels (i.e. second row starts with y = δx). See Fig. 17b
for an example.

We also contemplate the case where the visual does not
correspond to the whole image but instead a centered circular
region. An example with rectangular and circular visual field
are shown in Fig. 17c and Fig. 17d. The computation of the
deltas needs to consider that, in this case, the area to display
phosphenes is not w · h. For simplicity, we will assume I is
a square (w = h), and the circle is inscribed in the square
(radius = w/2). Thus, the area of the circle is π/4 times the
area of the square (w · h). To get the deltas (for hexagonal
grids):

δx =

√
w · h · 2/

√
3 · π/4

NP

 , δy =

⌊√
3/2 · δx

⌋
(3)

In all those situations, we start setting the first phosphene
at P1 = (δx/2, δy/2) and start adding phosphenes side by
side following δx until the row ends. The next row starts
δy pixels down, with an extra displacement of δx/2 in the
case of hexagonal grids. When the circular region mode is
selected, we additionally need to check if these phosphenes
are inside the circle. Notice that, in all these phosphene maps,
the final number of phosphenes might be slightly different
than the parameterNP sincewe prioritize displaying complete
regular grids that cover all the image and some values of NP

FIGURE 18. Simulations of the alterations of regular maps that occur in
real devices. (a) 20% of drop-out (d = 0.2). (b) Noise of standard
deviation σ = 5. (c) Both alterations: d = 0.4, σ = 10.

may be impossible to reproduce. Nevertheless, this procedure
provides a good approximation to the parameter NP number,
and the numeric difference is normally less noticeable than
an incomplete grid.

C. ALTERATIONS ON THE MAP: DROP-OUT, NOISE
Numerous reports point out several issues that may arise
and are unavoidable at this point due to biological and tech-
nological constraints. Two of the most common phosphene
map deviations have been included in our SPV module: the
drop-out and noise in phosphene positions.

• Drop-out: Usually, not all elicited phosphenes are
actually turned on [17], [18]. It can happen that even
though the electrode emits the signal, the prosthesis
malfunctions due to damage in the optical nerve or
other parts of the visual system. We address this issue
with a parameter of the system called drop-out ratio,
d , with values between 0 and 1, that will automatically
leave d · NP phosphenes completely shutdown. The
phosphenes are chosen randomly and only once at the
beginning of the simulation, considering the location of
the malfunction is fixed for each individual. An example
is shown in Fig. 18a.

• Noise: As mentioned in Section A-B, the map is always
irregular. To model this, we add some Gaussian noise
to the phosphene positions Pi. Thus, we generate new
phosphene positions for visualization, P̂i. To get the
deviations of P̂i with respect to Pi, for the normal distri-
bution, we use mean zero and noise standard deviation
σ , which is another system parameter. An example is
shown in Fig. 18b.

Notice that, since we are trying to replicate the real devices,
the subject perceives the dropout and noise effects but they are
unknown to the image processing, so it will only be applied
for visualization but will not change the positions of the
phosphenesPi in the simulator when they are used to generate
phosphene representations. An example of a visualization
with high drop-out and noise can be observed in Fig. 18c.

D. FIELD OF VIEW AND PHOSPHENE SIZE
Another important parameter of the prosthetic system is the
field of view. While humans on standard conditions have
around 210◦

× 150◦ of horizontal × vertical field of view
that is not achievable in current prosthetic vision devices,
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FIGURE 19. Several configurations of our SPV module varying fields of
view and size of the phosphenes. For each case, above there is an overlay
of the phosphene visual field on the RGB image (of 57◦ × 43◦), and below
the corresponding phosphene image. (a) FOV = 10◦, FOVP = 0.5◦.
(b) FOV = 20◦, FOVP = 1◦. (c) FOV = 30◦, FOVP = 1◦. (d) FOV = 30◦,
FOVP = 2◦.

where fields of view range from ≈ 10◦ to 20◦. Besides, the
field of view of cameras is normally different (much larger)
than that of the visual prosthesis, so the direct encoding of
images to phosphenic representation is inaccurate and may
yield to compressed visualizations in the reduced field of
view of the subject. This could be problematic or disorienting
when interacting with the real world since the position of the
perceived features the user might want to interact with will
be out of place with respect to their location in the real world
and with respect the possible residual vision the patient might
have.

To incorporate the system’s field of view as a parameter
(that in fact, depends on the prosthetic device and is decou-
pled from the camera), we use the pinhole camera model in
the phosphene image. Thus, the same way any camera C has
its own intrinsic calibration matrix KC , we define another
intrinsic calibration matrix for the phosphene image I that
we call KP, and is defined by:

KP =

f Px 0 cx
0 f Py cy
0 0 1

 (4)

where f Px and f Py are the focal lengths of the phosphene
camera, and (cx , cy) = (w/2, h/2) is the center of the image
I. To get the focal lengths of the system given the image
size (w × h) and the field of view (FOV ) of the prosthetic
system, we can use the following formula (showing example
for horizontal):

f Px =
w

2 · tan(FOV/2)
(5)

Similarly, f Py can be computed, although we will assume
perfectly square pixels and thus f Px = f Py = f P for simplicity.
Cases where the FOV is different in x and in y are simply
modeled by the aspect ratio parameter.

This sort of reasoning should apply to any instance
that needs to be drawn in the SPV module, particularly
phosphenes. In order to replicate prosthetic vision systems,
when we talk about phosphene size, it should not be described
in pixels since real devices do not use pixels. Instead, the

size of the phosphenes (particularly the diameter) is given
as arcs of field of view (denoted as FOVP). For example,
in [15], it is noted that most reported data regarding the size
of phosphenes say they are between 0.5 to 2 degrees of FOVP.
Hence, given the focal length of the system, we can obtain the
size of the diameter of the phosphene φP and thus the size in
pixels of the phosphene sprite (width and height) as follows:

φP = 2 · f P · tan(FOVP/2) (6)

The phosphene sprites Si will be reshaped to be φP × φP
before its insertion in the corresponding phosphene positions
in the phosphene map in I. In Fig. 19 there are four examples
of different configurations of our SPV module with different
FOV and FOVP.
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