494 research outputs found

    Filter design for the detection of compact sources based on the Neyman-Pearson detector

    Full text link
    This paper considers the problem of compact source detection on a Gaussian background in 1D. Two aspects of this problem are considered: the design of the detector and the filtering of the data. Our detection scheme is based on local maxima and it takes into account not only the amplitude but also the curvature of the maxima. A Neyman-Pearson test is used to define the region of acceptance, that is given by a sufficient linear detector that is independent on the amplitude distribution of the sources. We study how detection can be enhanced by means of linear filters with a scaling parameter and compare some of them (the Mexican Hat wavelet, the matched and the scale-adaptive filters). We introduce a new filter, that depends on two free parameters (biparametric scale-adaptive filter). The value of these two parameters can be determined, given the a priori pdf of the amplitudes of the sources, such that the filter optimizes the performance of the detector in the sense that it gives the maximum number of real detections once fixed the number density of spurious sources. The combination of a detection scheme that includes information on the curvature and a flexible filter that incorporates two free parameters (one of them a scaling) improves significantly the number of detections in some interesting cases. In particular, for the case of weak sources embedded in white noise the improvement with respect to the standard matched filter is of the order of 40%. Finally, an estimation of the amplitude of the source is introduced and it is proven that such an estimator is unbiased and it has maximum efficiency. We perform numerical simulations to test these theoretical ideas and conclude that the results of the simulations agree with the analytical ones.Comment: 15 pages, 13 figures, version accepted for publication in MNRAS. Corrected typos in Tab.

    Planck early results. VII. The Early Release Compact Source Catalogue

    Get PDF
    26 páginas, 18 figuras, 7 tablas.-- Planck Collaboration: et al.A brief description of the methodology of construction, contents and usage of the Planck Early Release Compact Source Catalogue (ERCSC), including the Early Cold Cores (ECC) and the Early Sunyaev-Zeldovich (ESZ) cluster catalogue is provided. The catalogue is based on data that consist of mapping the entire sky once and 60% of the sky a second time by Planck, thereby comprising the first high sensitivity radio/submillimetre observations of the entire sky. Four source detection algorithms were run as part of the ERCSC pipeline. A Monte-Carlo algorithm based on the injection and extraction of artificial sources into the Planck maps was implemented to select reliable sources among all extracted candidates such that the cumulative reliability of the catalogue is ≥90%. There is no requirement on completeness for the ERCSC. As a result of the Monte-Carlo assessment of reliability of sources from the different techniques, an implementation of the PowellSnakes source extraction technique was used at the five frequencies between 30 and 143GHz while the SExtractor technique was used between 217 and 857GHz. The 10σ photometric flux density limit of the catalogue at |b| > 30° is 0.49, 1.0, 0.67, 0.5, 0.33, 0.28, 0.25, 0.47 and 0.82 Jy at each of the nine frequencies between 30 and 857GHz. Sources which are up to a factor of ~2 fainter than this limit, and which are present in “clean” regions of the Galaxy where the sky background due to emission from the interstellar medium is low, are included in the ERCSC if they meet the high reliability criterion. The Planck ERCSC sources have known associations to stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features. A significant fraction of unclassified sources are also present in the catalogs. In addition, two early release catalogs that contain 915 cold molecular cloud core candidates and 189 SZ cluster candidates that have been generated using multifrequency algorithms are presented. The entire source list, with more than 15000 unique sources, is ripe for follow-up characterisation with Herschel, ATCA, VLA, SOFIA, ALMA and other ground-based observing facilities.The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU).Peer reviewe

    Planck early results. XXIII. The first all-sky survey of Galactic cold clumps

    Get PDF
    33 páginas, 24 figuras, 9 tablas.-- Planck Collaboration: et al.We present the statistical properties of the Cold Clump Catalogue of Planck Objects (C3PO), the first all-sky catalogue of cold objects, in terms of their spatial distribution, dust temperature, distance, mass, and morphology. We have combined Planck and IRAS data to extract 10342 cold sources that stand out against a warmer environment. The sources are distributed over the whole sky, including in the Galactic plane, despite the confusion, and up to high latitudes (>30°). We find a strong spatial correlation of these sources with ancillary data tracing Galactic molecular structures and infrared dark clouds where the latter have been catalogued. These cold clumps are not isolated but clustered in groups. Dust temperature and emissivity spectral index values are derived from their spectral energy distributions using both Planck and IRAS data. The temperatures range from 7K to 19K, with a distribution peaking around 13K. The data are inconsistent with a constant value of the associated spectral index β over the whole temperature range: β varies from 1.4 to 2.8, with a mean value around 2.1. Distances are obtained for approximately one third of the objects. Most of the detections lie within 2kpc of the Sun, but more distant sources are also detected, out to 7kpc. The mass estimates inferred from dust emission range from 0.4 M⊙ to 2.4 × 105 M⊙. Their physical properties show that these cold sources trace a broad range of objects, from low-mass dense cores to giant molecular clouds, hence the “cold clump” terminology. This first statistical analysis of the C3PO reveals at least two colder populations of special interest with temperatures in the range 7 to 12K: cores that mostly lie close to the Sun; and massive cold clumps located in the inner Galaxy. We also describe the statistics of the early cold core (ECC) sample that is a subset of the C3PO, containing only the 915 most reliable detections. The ECC is delivered as a part of the Planck Early Release Compact Source Catalogue (ERCSC).Peer reviewe

    Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMWe present the results of the light sterile neutrino search from the second Karlsruhe Tritium Neutrino (KATRIN) measurement campaign in 2019. Approaching nominal activity, 3.76 × 106 tritium β-electrons are analyzed in an energy window extending down to 40 eV below the tritium end point at E0 = 18.57 keV. We consider the 3ν + 1 framework with three active and one sterile neutrino flavors. The analysis is sensitive to a fourth mass eigenstate m42 ≲ 1600 eV2 and active-to-sterile mixing |Ue4|2 ≳ 6 × 10-3. As no sterile-neutrino signal was observed, we provide improved exclusion contours on m42 and |Ue4|2 at 95% C.L. Our results supersede the limits from the Mainz and Troitsk experiments. Furthermore, we are able to exclude the large Δm412 solutions of the reactor antineutrino and gallium anomalies to a great extent. The latter has recently been reaffirmed by the BEST Collaboration and could be explained by a sterile neutrino with large mixing. While the remaining solutions at small Δm412 are mostly excluded by short-baseline reactor experiments, KATRIN is the only ongoing laboratory experiment to be sensitive to relevant solutions at large Δm412 through a robust spectral shape analysi

    The estimation of the SZ effects with unbiased multifilters

    Full text link
    In this work we study the performance of linear multifilters for the estimation of the amplitudes of the thermal and kinematic Sunyaev-Zel'dovich effects. We show that when both effects are present, estimation of these effects with standard matched multifilters is intrinsically biased. This bias is due to the fact that both signals have basically the same spatial profile. We find a new family of multifilters related to the matched multifilters that cancel this systematic bias, hence we call them Unbiased Matched Multifilters. We test the unbiased matched multifilters and compare them with the standard matched multifilters using simulations that reproduce the future Planck mission's observations. We find that in the case of the standard matched multifilters the systematic bias in the estimation of the kinematic Sunyaev-Zel'dovich effect can be very large, even greater than the statistical error bars. Unbiased matched multifilters cancel effectively this kind of bias. In concordance with other works in the literature, our results indicate that the sensitivity and resolution of Planck will not be enough to give reliable estimations of the kinematic Sunyaev-Zel'dovich of individual clusters. However, since the estimation with the unbiased matched multifilters is not intrinsically biased, it can be possible to use them to statistically study peculiar velocities in large scales using large sets of clusters.Comment: 12 pages, 6 figures, submitted to MNRA

    A multifrequency method based on the Matched Multifilter for the detection of point sources in CMB maps

    Get PDF
    In this work we deal with the problem of simultaneous multifrequency detection of extragalactic point sources in maps of the Cosmic Microwave Background. We apply a linear filtering technique that uses spatial information and the cross-power spectrum. To make this, we simulate realistic and non-realistic flat patches of the sky at two frequencies of Planck: 44 and 100 GHz. We filter to detect and estimate the point sources and compare this technique with the monofrequency matched filter in terms of completeness, reliability, flux and spectral index accuracy. The multifrequency method outperforms the matched filter at the two frequencies and in all the studied cases in the work.Comment: 14 pages, 6 figures, 1 tabl

    Intermediate inflation and the slow-roll approximation

    Full text link
    It is shown that spatially homogeneous solutions of the Einstein equations coupled to a nonlinear scalar field and other matter exhibit accelerated expansion at late times for a wide variety of potentials VV. These potentials are strictly positive but tend to zero at infinity. They satisfy restrictions on V/VV'/V and V/VV''/V' related to the slow-roll approximation. These results generalize Wald's theorem for spacetimes with positive cosmological constant to those with accelerated expansion driven by potentials belonging to a large class.Comment: 19 pages, results unchanged, additional backgroun

    Scalar Field as Dark Matter in the Universe

    Get PDF
    We investigate the hypothesis that the scalar field is the dark matter and the dark energy in the Cosmos, wich comprises about 95% of the matter of the Universe. We show that this hypothesis explains quite well the recent observations on type Ia supernovae.Comment: 4 pages REVTeX, 1 eps figure. Minor changes. To appear in Classical and Quantum Gravit

    Planck intermediate results: VIII. Filaments between interacting clusters

    Get PDF
    [Context]: About half of the baryons of the Universe are expected to be in the form of filaments of hot and low-density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories, which are limited in sensitivity to the diffuse low-density medium. [Aims]: The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low-density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. [Methods]: Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we selected physical pairs of clusters as candidates. Using the Planck data, we constructed a local map of the tSZ effect centred on each pair of galaxy clusters. ROSAT data were used to construct X-ray maps of these pairs. After modelling and subtracting the tSZ effect and X-ray emission for each cluster in the pair, we studied the residuals on both the SZ and X-ray maps. [Results]: For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 ± 0.9 keV (consistent with previous estimates) and a baryon density of (3.7 ± 0.2) × 10-4 cm -3. Conclusions. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas. © 2013 ESO.The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU).Peer Reviewe
    corecore