11 research outputs found

    Science and technology requirements to explore caves in our Solar System

    Get PDF
    Research on planetary caves requires cross-planetary-body investigations spanning multiple disciplines, including geology, climatology, astrobiology, robotics, human exploration and operations. The community determined that a roadmap was needed to establish a common framework for planetary cave research. This white paper is our initial conception

    Fundamental Science and Engineering Questions in Planetary Cave Exploration

    Get PDF
    32 pĂĄginas.- 3 figuras.- 2 tablas.- 260 referenciasNearly half a century ago, two papers postulated the likelihood of lunar lava tube caves using mathematical models. Today, armed with an array of orbiting and fly-by satellites and survey instrumentation, we have now acquired cave data across our solar system-including the identification of potential cave entrances on the Moon, Mars, and at least nine other planetary bodies. These discoveries gave rise to the study of planetary caves. To help advance this field, we leveraged the expertise of an interdisciplinary group to identify a strategy to explore caves beyond Earth. Focusing primarily on astrobiology, the cave environment, geology, robotics, instrumentation, and human exploration, our goal was to produce a framework to guide this subdiscipline through at least the next decade. To do this, we first assembled a list of 198 science and engineering questions. Then, through a series of social surveys, 114 scientists and engineers winnowed down the list to the top 53 highest priority questions. This exercise resulted in identifying emerging and crucial research areas that require robust development to ultimately support a robotic mission to a planetary cave-principally the Moon and/or Mars. With the necessary financial investment and institutional support, the research and technological development required to achieve these necessary advancements over the next decade are attainable. Subsequently, we will be positioned to robotically examine lunar caves and search for evidence of life within Martian caves; in turn, this will set the stage for human exploration and potential habitation of both the lunar and Martian subsurface.The following funding sources are recognized for supporting several of the contributing authors: Human Frontiers Science Program grant #RGY0066/2018 (for AAB), NASA Innovative Advanced Concepts Grant #80HQTR19C0034 (HJ, UYW, and WLW), and European Research Council, ERC Consolidator Grant #818602 (AGF), the Spanish Ministry of Science and Innovation (project PID2019-108672RJ-I00) and the "Ramon y Cajal" post-doctoral contract (grant #RYC2019-026885-I (AZM)), and Contract #80NM0018D0004 between the Jet Propulsion Laboratory, California Institute of Technology and the National Aeronautics and Space Administration (AA, MJM, KU, and LK).Peer reviewe

    Earth as a Tool for Astrobiology—A European Perspective

    Get PDF

    Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: A review

    No full text
    Lava tubes and basaltic caves are common features in volcanic terrains on Earth. Lava tubes and cave-like features have also been identified on Mars based on orbital imagery and remote-sensing data. Caves are unique environments where both secondary mineral precipitation and microbial growth are enhanced by stable physico-chemical conditions. Thus, they represent excellent locations where traces of microbial life, or biosignatures, are formed and preserved in minerals. By analogy with terrestrial caves, caves on Mars may contain a record of secondary mineralization that would inform us on past aqueous activity. They may also represent the best locations to search for biosignatures. The study of caves on Earth can be used to test hypotheses and better understand biogeochemical processes, and the signatures that these processes leave in mineral deposits. Caves may also serve as test beds for the development of exploration strategies and novel technologies for future missions to Mars. Here we review recent evidence for the presence of caves or lava tubes on Mars, as well as the geomicrobiology of lava tubes and basaltic caves on Earth. We also propose future lines of investigation, including exploration strategies and relevant technologies

    Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: A review

    No full text
    Lava tubes and basaltic caves are common features in volcanic terrains on Earth. Lava tubes and cave-like features have also been identified on Mars based on orbital imagery and remote-sensing data. Caves are unique environments where both secondary mineral precipitation and microbial growth are enhanced by stable physico-chemical conditions. Thus, they represent excellent locations where traces of microbial life, or biosignatures, are formed and preserved in minerals. By analogy with terrestrial caves, caves on Mars may contain a record of secondary mineralization that would inform us on past aqueous activity. They may also represent the best locations to search for biosignatures. The study of caves on Earth can be used to test hypotheses and better understand biogeochemical processes, and the signatures that these processes leave in mineral deposits. Caves may also serve as test beds for the development of exploration strategies and novel technologies for future missions to Mars. Here we review recent evidence for the presence of caves or lava tubes on Mars, as well as the geomicrobiology of lava tubes and basaltic caves on Earth. We also propose future lines of investigation, including exploration strategies and relevant technologies

    Impacto orcamentario da utilizacao do Metodo Canguru no cuidado neonatal

    Get PDF
    OBJETIVO Estimar o impacto orçamentĂĄrio da utilização do MĂ©todo Canguru na rede municipal de saĂșde. MÉTODOS Um modelo de decisĂŁo analĂ­tico foi desenvolvido para simular os custos do MĂ©todo Canguru e Unidade IntermediĂĄria Neonatal no Rio de Janeiro, RJ, em 2011. A população de referĂȘncia foi constituĂ­da pelos recĂ©m-nascidos estĂĄveis clinicamente, que podem receber assistĂȘncia nas duas modalidades de cuidado. O impacto orçamentĂĄrio foi estimado para uma coorte hipotĂ©tica de 1.000 recĂ©m-nascidos elegĂ­veis em um ano. A proporção de recĂ©m-nascidos elegĂ­veis que recebem assistĂȘncia nas duas modalidades foi obtida por coleta de dados nas maternidades incluĂ­das no estudo. As probabilidades dos eventos e o consumo de recursos de saĂșde, no perĂ­odo da assistĂȘncia, foram incorporados ao modelo. CenĂĄrios foram desenvolvidos para refletir a adoção do mĂ©todo Canguru em maior ou menor escala. RESULTADOS A utilização do MĂ©todo Canguru significou redução de gastos equivalente a 16% em um ano, se todos os recĂ©m-nascidos elegĂ­veis fossem assistidos por esse mĂ©todo. CONCLUSÕES A opção MĂ©todo Canguru Ă© de menor custo comparado com a da Unidade IntermediĂĄria Neonatal. A anĂĄlise de impacto orçamentĂĄrio da utilização desse mĂ©todo no Sistema Único de SaĂșde indicou economia importante para o perĂ­odo de um ano

    Earth as a Tool for Astrobiology - A European Perspective

    Get PDF
    International audienceScientists use the Earth as a tool for astrobiology by analyzing planetary field analogues (i.e. terrestrial samples and field sites that resemble planetary bodies in our Solar System). In addition, they expose the selected planetary field analogues in simulation chambers to conditions that mimic the ones of planets, moons and Low Earth Orbit (LEO) space conditions, as well as the chemistry occurring in interstellar and cometary ices. This paper reviews the ways the Earth is used by astrobiologists: (i) by conducting planetary field analogue studies to investigate extant life from extreme environments, its metabolisms, adaptation strategies and modern biosignatures; (ii) by conducting planetary field analogue studies to investigate extinct life from the oldest rocks on our planet and its biosignatures; (iii) by exposing terrestrial samples to simulated space or planetary environments and producing a sample analogue to investigate changes in minerals, biosignatures and microorganisms. The European Space Agency (ESA) created a topical team in 2011 to investigate recent activities using the Earth as a tool for astrobiology and to formulate recommendations and scientific needs to improve ground-based astrobiological research. Space is an important tool for astrobiology (see Horneck et al. in Astrobiology, 16:201–243, 2016; Cottin et al., 2017), but access to space is limited. Complementing research on Earth provides fast access, more replications and higher sample throughput. The major conclusions of the topical team and suggestions for the future include more scientifically qualified calls for field campaigns with planetary analogy, and a centralized point of contact at ESA or the EU for the organization of a survey of such expeditions. An improvement of the coordinated logistics, infrastructures and funding system supporting the combination of field work with planetary simulation investigations, as well as an optimization of the scientific return and data processing, data storage and data distribution is also needed. Finally, a coordinated EU or ESA education and outreach program would improve the participation of the public in the astrobiological activities

    Abstract

    No full text
    corecore