103 research outputs found

    Fast multipole networks

    Full text link
    Two prerequisites for robotic multiagent systems are mobility and communication. Fast multipole networks (FMNs) enable both ends within a unified framework. FMNs can be organized very efficiently in a distributed way from local information and are ideally suited for motion planning using artificial potentials. We compare FMNs to conventional communication topologies, and find that FMNs offer competitive communication performance (including higher network efficiency per edge at marginal energy cost) in addition to advantages for mobility

    Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during Salmonella Typhimurium infection

    Get PDF
    Salmonella Typhimurium causes a self-limiting gastroenteritis that may lead to systemic disease. Bacteria invade the small intestine, crossing the intestinal epithelium from where they are transported to the mesenteric lymph nodes (MLNs) within migrating immune cells. MLNs are an important site at which the innate and adaptive immune responses converge but their architecture and function is severely disrupted during S. Typhimurium infection. To further understand host-pathogen interactions at this site, we used mass spectrometry imaging (MSI) to analyse MLN tissue from a murine model of S. Typhimurium infection. A molecule, identified as palmitoylcarnitine (PalC), was of particular interest due to its high abundance at loci of S. Typhimurium infection and MLN disruption. High levels of PalC localised to sites within the MLNs where B and T cells were absent and where the perimeter of CD169+ sub capsular sinus macrophages was disrupted. MLN cells cultured ex vivo and treated with PalC had reduced CD4+CD25+ T cells and an increased number of B220+CD19+ B cells. The reduction in CD4+CD25+ T cells was likely due to apoptosis driven by increased caspase-3/7 activity. These data indicate that PalC significantly alters the host response in the MLNs, acting as a decisive factor in infection outcome

    Age influence on effectiveness of a novel 3-phytase in barley-wheat based diets for pigs from 12 to 108 kg under commercial conditions

    Full text link
    [EN] The main objective of this study was to evaluate the influence of pig's age on the effectiveness of a new microbial 3-phytase, produced by Komagataella phaffii, under commercial conditions in barley-wheat based diets. Two experiments were conducted in weaned, growing and finishing pigs; firstly, to determine phytase efficacy on dry matter, organic matter, energy, protein and mineral (phosphorus, P and calcium, Ca) digestibility (n = 48; Experiment 1), and secondly, to evaluate the effect of phytase on growth performance and bone mineralization (n = 312; Experiment 2). In each experiment, three barley-wheat based diets were formulated following the recommendations for each animal age, of which two versions were manufactured, including 0 and 1000 phytase units (FTU)/kg of feed of the new 3-phytase to be tested. Results showed the new phytase had the potential to increase the digestibility of Ca and P (on av. + 0.05 and +0.06, respectively; P < 0.01), especially P digestibility in growing pigs (+0.10; P < 0.001), consequently decreasing P and Ca excretion. Digestible energy (DE) of the diet increased with the addition of phytase in weaned pigs (+0.69 MJ/kg of dry matter (DM); P < 0.001). Dietary inclusion of new 3-phytase enhanced average daily gain from 46 to 94 days of age (+0.07 kg/d; P < 0.05) and decreased feed conversion ratio from 46 to 154 days of age (on av. -0.13; P < 0.05), although no significant effect was observed from 154 to 185 days of age. Addition of the new 3-phytase also promoted bone mineralization, increasing the weight of the bones (+3.99 and +3.64 g of tibia at 95 days and metacarpus at 100 days of age, respectively; P < 0.05) and the ash, Ca and P content in these bones (e.g. + 0.46 and +0.33 g of P in tibia at 95 days and metacarpus at 100 days of age, respectively; P < 0.001). In conclusion, pig age affected the efficacy of a new 3-phytase on P and Ca digestibility both in weaned and growing diets and DE content of the weaned diets, which also resulted in improvements in growth, feed conversion and bone development until 154 days of age. These effects seem to be reduced during the finishing period, although the advantages of the new 3-phytase on bone mineralization were maintained until 185 days of age.We thank the technical staff at the experimental farms of the Research and Technology Animal Centre (CITA-IVIA), the Institute of Animal Science and Technology (Universitat Politècnica de Valencia) and Javier Gómez (Crianzas Campovivo) for expert technical assistance and experimental support.Cambra López, M.; Cerisuelo, A.; Ferrer, P.; Ródenas Martínez, L.; Aligué, R.; Moset, V.; Pascual Amorós, JJ. (2020). Age influence on effectiveness of a novel 3-phytase in barley-wheat based diets for pigs from 12 to 108 kg under commercial conditions. Animal Feed Science and Technology. 267:1-13. https://doi.org/10.1016/j.anifeedsci.2020.114549S113267Adeola, O., & Cowieson, A. J. (2011). BOARD-INVITED REVIEW: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Journal of Animal Science, 89(10), 3189-3218. doi:10.2527/jas.2010-3715Almeida, F. N., Sulabo, R. C., & Stein, H. H. (2013). Effects of a novel bacterial phytase expressed in Aspergillus Oryzae on digestibility of calcium and phosphorus in diets fed to weanling or growing pigs. Journal of Animal Science and Biotechnology, 4(1). doi:10.1186/2049-1891-4-8Arredondo, M. A., Casas, G. A., & Stein, H. H. (2019). Increasing levels of microbial phytase increases the digestibility of energy and minerals in diets fed to pigs. Animal Feed Science and Technology, 248, 27-36. doi:10.1016/j.anifeedsci.2019.01.001Atakora, J. K. A., Moehn, S., Sands, J. S., & Ball, R. O. (2011). Effects of dietary crude protein and phytase–xylanase supplementation of wheat grain based diets on energy metabolism and enteric methane in growing finishing pigs. Animal Feed Science and Technology, 166-167, 422-429. doi:10.1016/j.anifeedsci.2011.04.030Blaabjerg, K., Nørgaard, J. V., & Poulsen, H. D. (2012). Effect of microbial phytase on phosphorus digestibility in non-heat-treated and heat-treated wheat–barley pig diets1. Journal of Animal Science, 90(suppl_4), 206-208. doi:10.2527/jas.53920Brady, S., Callan, J., Cowan, D., McGrane, M., & O’Doherty, J. (2002). Effect of phytase inclusion and calcium/phosphorus ratio on the performance and nutrient retention of grower-finisher pigs fed barley/wheat/soya bean meal-based diets. Journal of the Science of Food and Agriculture, 82(15), 1780-1790. doi:10.1002/jsfa.1262Braña, D. V., Ellis, M., Castañeda, E. O., Sands, J. S., & Baker, D. H. (2006). Effect of a novel phytase on growth performance, bone ash, and mineral digestibility in nursery and grower-finisher pigs. Journal of Animal Science, 84(7), 1839-1849. doi:10.2527/jas.2005-565Dersjant‐Li, Y., Awati, A., Schulze, H., & Partridge, G. (2014). Phytase in non‐ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. Journal of the Science of Food and Agriculture, 95(5), 878-896. doi:10.1002/jsfa.6998Eeckhout, W., & De Paepe, M. (1994). Total phosphorus, phytate-phosphorus and phytase activity in plant feedstuffs. Animal Feed Science and Technology, 47(1-2), 19-29. doi:10.1016/0377-8401(94)90156-2EMIOLA, A., AKINREMI, O., SLOMINSKI, B., & NYACHOTI, C. M. (2009). Nutrient utilization and manure P excretion in growing pigs fed corn-barley-soybean based diets supplemented with microbial phytase. Animal Science Journal, 80(1), 19-26. doi:10.1111/j.1740-0929.2008.00590.xGonzález-Vega, J. C., Walk, C. L., & Stein, H. H. (2015). Effects of microbial phytase on apparent and standardized total tract digestibility of calcium in calcium supplements fed to growing pigs1. Journal of Animal Science, 93(5), 2255-2264. doi:10.2527/jas.2014-8215Harper, A. F., Kornegay, E. T., & Schell, T. C. (1997). Phytase supplementation of low-phosphorus growing-finishing pig diets improves performance, phosphorus digestibility, and bone mineralization and reduces phosphorus excretion. Journal of Animal Science, 75(12), 3174. doi:10.2527/1997.75123174xHaug, W., & Lantzsch, H.-J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture, 34(12), 1423-1426. doi:10.1002/jsfa.2740341217Heaney, R. P., Abrams, S., Dawson-Hughes, B., Looker, A., Looker, A., Marcus, R., … Weaver, C. (2001). Peak Bone Mass. Osteoporosis International, 11(12), 985-1009. doi:10.1007/s001980070020Jørgensen, B. (1995). Effect of different energy and protein levels on leg weakness and osteochondrosis in pigs. Livestock Production Science, 41(2), 171-181. doi:10.1016/0301-6226(94)00048-cKemme, P. A., Jongbloed, A. W., Mroz, Z., & Beynen, A. C. (1997). The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status. Journal of Animal Science, 75(8), 2129. doi:10.2527/1997.7582129xKiela, P. R., & Ghishan, F. K. (2016). Physiology of Intestinal Absorption and Secretion. Best Practice & Research Clinical Gastroenterology, 30(2), 145-159. doi:10.1016/j.bpg.2016.02.007Kim, J. C., Simmins, P. H., Mullan, B. P., & Pluske, J. R. (2005). The effect of wheat phosphorus content and supplemental enzymes on digestibility and growth performance of weaner pigs. Animal Feed Science and Technology, 118(1-2), 139-152. doi:10.1016/j.anifeedsci.2004.08.016Koch, M. E., & Mahan, D. C. (1985). Biological Characteristics for Assessing Low Phosphorus Intake in Growing Swine. Journal of Animal Science, 60(3), 699-708. doi:10.2527/jas1985.603699xKonietzny, U., & Greiner, R. (2002). Molecular and catalytic properties of phytate-degrading enzymes (phytases). International Journal of Food Science and Technology, 37(7), 791-812. doi:10.1046/j.1365-2621.2002.00617.xLittell, R. C., Henry, P. R., & Ammerman, C. B. (1998). Statistical analysis of repeated measures data using SAS procedures. Journal of Animal Science, 76(4), 1216. doi:10.2527/1998.7641216xMahan, D. C. (1982). Dietary Calcium and Phosphorus Levels for Weanling Swine. Journal of Animal Science, 54(3), 559-564. doi:10.2527/jas1982.543559xMavromichalis, I., Hancock, J. D., Kim, I. H., Senne, B. W., Kropf, D. H., Kennedy, G. A., … Behnke, K. C. (1999). Effects of omitting vitamin and trace mineral premixes and(or) reducing inorganic phosphorus additions on growth performance, carcass characteristics, and muscle quality in finishing pigs. Journal of Animal Science, 77(10), 2700. doi:10.2527/1999.77102700xMoehn, S., Atakora, J. K. A., Sands, J., & Ball, R. O. (2007). Effect of phytase-xylanase supplementation to wheat-based diets on energy metabolism in growing–finishing pigs fed ad libitum. Livestock Science, 109(1-3), 271-274. doi:10.1016/j.livsci.2007.01.118Oryschak, M. A., Simmins, P. H., & Zijlstra, R. T. (2002). Effect of dietary particle size and carbohydrase and/or phytase supplementation on nitrogen and phosphorus excretion of grower pigs. Canadian Journal of Animal Science, 82(4), 533-540. doi:10.4141/a02-016Peter, C. ., Parr, T. ., Parr, E. ., Webel, D. ., & Baker, D. . (2001). The effects of phytase on growth performance, carcass characteristics, and bone mineralization of late-finishing pigs fed maize–soyabean meal diets containing no supplemental phosphorus, zinc, copper and manganese. Animal Feed Science and Technology, 94(3-4), 199-205. doi:10.1016/s0377-8401(01)00300-5Rodehutscord, M., Faust, M., & Lorenz, H. (1996). Digestibility of phosphorus contained in soybean meal, barley, and different varieties of wheat, without and with supplemental phytase fed to pigs and additivity of digestibility in a wheatsoybean-meal diet. Journal of Animal Physiology and Animal Nutrition, 75(1-5), 40-48. doi:10.1111/j.1439-0396.1996.tb00466.xSelle, P. H., & Ravindran, V. (2008). Phytate-degrading enzymes in pig nutrition. Livestock Science, 113(2-3), 99-122. doi:10.1016/j.livsci.2007.05.014Selle, P. H., Cadogan, D. J., & Bryden, W. L. (2003). Effects of phytase supplementation of phosphorus-adequate, lysine-deficient, wheat-based diets on growth performance of weaner pigs. Australian Journal of Agricultural Research, 54(3), 323. doi:10.1071/ar02121She, Y., Su, Y., Liu, L., Huang, C., Li, J., Li, P., … Piao, X. (2015). Effects of microbial phytase on coefficient of standardized total tract digestibility of phosphorus in growing pigs fed corn and corn co-products, wheat and wheat co-products and oilseed meals. Animal Feed Science and Technology, 208, 132-144. doi:10.1016/j.anifeedsci.2015.07.011Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi:10.3168/jds.s0022-0302(91)78551-2Varley, P. F., Callan, J. J., & O’Doherty, J. V. (2011). Effect of dietary phosphorus and calcium level and phytase addition on performance, bone parameters, apparent nutrient digestibility, mineral and nitrogen utilization of weaner pigs and the subsequent effect on finisher pig bone parameters. Animal Feed Science and Technology, 165(3-4), 201-209. doi:10.1016/j.anifeedsci.2011.02.017Varley, P. F., Flynn, B., Callan, J. J., & O’Doherty, J. V. (2011). Effect of phytase level in a low phosphorus diet on performance and bone development in weaner pigs and the subsequent effect on finisher pig bone development. Livestock Science, 138(1-3), 152-158. doi:10.1016/j.livsci.2010.12.014Vipperman, P. E., Peo, E. R., & Cunningham, P. J. (1974). Effect of Dietary Calcium and Phosphorus Level upon Calcium, Phosphorus and Nitrogen Balance in Swine. Journal of Animal Science, 38(4), 758-765. doi:10.2527/jas1974.384758

    Dual Neonate Vaccine Platform against HIV-1 and M. tuberculosis

    Get PDF
    Acquired immunodeficiency syndrome and tuberculosis (TB) are two of the world's most devastating diseases. The first vaccine the majority of infants born in Africa receive is Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a prevention against TB. BCG protects against disseminated disease in the first 10 years of life, but provides a variable protection against pulmonary TB and enhancing boost delivered by recombinant modified vaccinia virus Ankara (rMVA) expressing antigen 85A (Ag85A) of M. tuberculosis is currently in phase IIb evaluation in African neonates. If the newborn's mother is positive for human immunodeficiency virus type 1 (HIV-1), the baby is at high risk of acquiring HIV-1 through breastfeeding. We suggested that a vaccination consisting of recombinant BCG expressing HIV-1 immunogen administered at birth followed by a boost with rMVA sharing the same immunogen could serve as a strategy for prevention of mother-to-child transmission of HIV-1 and rMVA expressing an African HIV-1-derived immunogen HIVA is currently in phase I trials in African neonates. Here, we aim to develop a dual neonate vaccine platform against HIV-1 and TB consisting of BCG.HIVA administered at birth followed by a boost with MVA.HIVA.85A. Thus, mMVA.HIVA.85A and sMVA.HIVA.85A vaccines were constructed, in which the transgene transcription is driven by either modified H5 or short synthetic promoters, respectively, and tested for immunogenicity alone and in combination with BCG.HIVA222. mMVA.HIVA.85A was produced markerless and thus suitable for clinical manufacture. While sMVA.HIVA.85A expressed higher levels of the immunogens, it was less immunogenic than mMVA.HIVA.85A in BALB/c mice. A BCG.HIVA222–mMVA.HIVA.85A prime-boost regimen induced robust T cell responses to both HIV-1 and M. tuberculosis. Therefore, proof-of-principle for a dual anti-HIV-1/M. tuberculosis infant vaccine platform is established. Induction of immune responses against these pathogens soon after birth is highly desirable and may provide a basis for lifetime protection maintained by boosts later in life

    The therapeutic potential of regulatory T cells for the treatment of autoimmune disease

    Full text link
    IntroductionImmune tolerance remains the holy grail of therapeutic immunology in the fields of organ and tissue transplant rejection, autoimmune diseases, and allergy and asthma. We have learned that FoxP3(+)CD4(+) regulatory T cells play a vital role in both the induction and maintenance of self-tolerance.Areas coveredIn this opinion piece, we highlight regulatory T cells (Treg) cell biology and novel immune treatments to take advantage of these cells as potent therapeutics. We discuss the potential to utilize Treg and Treg-friendly therapies to replace current general immunosuppressives and induce tolerance as a path towards a drug-free existence without associated toxicities.Expert opinionFinally, we opine on the fact that biomedicine sits on the cusp of a new revolution: the use of human cells as versatile therapeutic engines. We highlight the challenges and opportunities associated with the development of a foundational cellular engineering science that provides a systematic framework for safely and predictably regulating cellular behaviors. Although Treg therapy has become a legitimate clinical treatment, development of the therapy will require a better understanding of the underlying Treg biology, manufacturing advances to promote cost effectiveness and combinations with other drugs to alter the pathogenicity/regulatory balance
    corecore