25 research outputs found
Influence of the powders phase composition and sintering atmosphere on the structure and magnetic properties of Mn-Zn ferrites
The magnetic properties of Mn-Zn ferrites depend strongly on the microstructure, chemical and phase composition. In this paper the effect of synthesis and sintering conditions on the structure, phase composition and properties of Mn-Zn ferrites is investigated. The specimens for the study were obtained by pressureless sintering. The magnetic properties were measured on a B-H analyzer. The structure was investigated by XRD and SEM. Materials with an average grain size of 2.2 μm were obtained by sintering at a temperature of 1265 °C. It was found that an increase in the synthesis temperature from 700 to 1000 °C promotes the growth of the initial magnetic permeability of these materials from 1100 to 1370. The rapid cooling of the powders synthesized at 1000 °C allows maintaining a high content of the spinel phase. In the structure of materials obtained by sintering powders with initially high spinel content at 1300 °C, grains of abnormally large size are formed. This leads to an increase in the initial permeability, magnetic induction at Hm = 1200 A/m, f = 10 kHz and magnetic losses at high frequencies (up to 500 kHz). A material with fine-grained structure was obtained by using air at the heating stage of pressureless sintering. This contributed to the reduction of magnetic losses without a significant decrease in Bm
Potential landing sites for Mars Pathfinder
In addition to a better understanding of the geological evolution of Mars, new techniques for processing available data have emerged, new data have been acquired, and the engineering approaches for placing spacecraft on the surface have evolved. Selection of the Mars Pathfinder landing site must take these issues into account, along with mission constraints. An advantage of Mars Pathfinder is the rover for sampling surface materials over a range of tens of meters. However, engineering constraints and the limited scientific payload of this mission require new approaches for landing site selection. One approach is to select sites exhibiting a wide variety of rocks near the lander. An alternative approach is to select sites in which the regional geology consists of a single rock type representing a key datum for the geological study of Mars, and is uniformly distributed within the landing ellipse
Effect of sintering duration on structure and properties of Ni-Al metal-intermetallic composites produced by SPS
The fabrication of Ni-Al based metal-intermetallic layered (MIL) composites is one of the actively developing directions in the production of materials for aircraft and space industries. Alternating hard intermetallic layers with ductile metal layers provides a unique combination of mechanical properties. In this study, metal-intermetallic layered composites consisting of Ni and nickel aluminides were fabricated using spark plasma sintering (SPS) of Ni and Al foils 100 and 25 μm in thickness, respectively. Samples sintered at 1100 °C for 0.5, 3, and 8 min were obtained. The purpose of this study was to fabricate Ni-Al MIL composites with increased strength properties using SPS technique and to investigate the effect of sintering duration on structure and properties. The structure of the samples sintered for 0.5 min consisted of Ni layers and intermetallic layers containing the sublayers with stoichiometric and Ni-rich B2 NiAl, L10 twinned martensite NiAl. The tensile strength of such composites was 485 MPa. The intermetallic layers in the sample sintered for 3 min have more Ni-rich NiAl, martensite NiAl, and Ni3Al phases, which promoted to an increase in tensile strength to 575 MPa. The sample sintered for 8 min consisted of Ni and a solid solution of Al in Ni and showed the highest tensile strength, 610 MPa, due to solid solution hardening in the interlayers. The samples did not break when applying bending load, which is the evidence of the good reliability and durability of the composites
Features of calcium hexaaluminate formation in alumina-zirconia ceramics
Alumina-zirconia composites containing calcium hexaaluminate in the amount from 0 to 15 wt.% were investigated. The materials were obtained by water dispersion, granulation, axial pressing, and free sintering. Density and open porosity were determined by the hydrostatic weighing method. Phase analysis was performed using synchrotron radiation. Structural investigations were conducted using scanning and transmission electron microscopy. Vickers hardness was determined at a load of 10 kg. Fracture toughness was determined by the indentation method. With increasing CaAl12O19 content in the composites, the relative density decreased from 98.5% to 91.8%, and the open porosity increased from 0.2 to 1.4%. The lattice parameters of t-ZrO2 crystal lattice did not change up to 12 wt.% CaAl12O19, and the degree of tetragonality was 1.435. The degree of tetragonality decreased for the material with 15 wt.% CaAl12O19 and reached 1.420. The lattice parameters of CaAl12O19 decreased with increasing content. Platelet size increased with increasing calcium hexaaluminate content. For the materials containing up to 9 wt.% CaAl12O19, the average length of the platelets was 2 μm, the width was 0.4 μm, and the aspect ratio was 5. For the material with maximum calcium hexaaluminate content, the average length of the platelets was 4.2 μm, the width was 0.6 μm, and the aspect ratio was 7. With increasing CaAl12O19 content, the hardness decreased from 1700±25 to 1390±30 Hv, and the critical stress intensity factor increased by 34% to 6.7±0.3 MPa·m1/2
Estimation of atmospheric methane levels over the Republic of Tatarstan (Russia) territory in 2019–2023 using satellite remote sensing data: effects of anthropogenic and climate drivers
Methane (CH4) is the second most prevalent greenhouse gas after carbon dioxide. Its concentration in the atmosphere has been increasing at an accelerated rate in recent years, primarily attributed to anthropogenic activities. The article provides an assessment of methane concentrations over the Republic of Tatarstan (Russia) territory for a five-year period (2019–2023) using TROPOMI/Sentinel-5P data. Access to the data and key operations were conducted through the Google Earth Engine cloud platform. On average, the methane concentration was 1835±9 parts per billion (ppb) in 2019, 1854±12 ppb in 2020, 1863±9 ppb in 2021, 1868±10 ppb in 2022, and 1877±8 ppb in 2023, respectively. The average CH4 concentration for the study period (2019–2023) was 1865±7 ppb. There is a steady trend of increasing annual background methane levels
Exploring Gusev Crater with spirit: Review of science objectives and testable hypotheses
Gusev Crater was selected as the landing site for the Mars Exploration Rover (MER) Spirit mission. Located at the outlet of Ma'adim Vallis and 250 km south of the volcano Apollinaris Patera, Gusev is an outstanding site to achieve the goals of the MER mission. The crater could have collected sediments from a variety of sources during its 3.9 Ga history, including fluvial, lacustrine, volcanic, glacial, impact, regional and local aeolian, and global air falls. It is a unique site to investigate the past history of water on Mars, climate and geological changes, and the potential habitability of the planet, which are central science objectives of the MER mission. Because of its complex history and potential diversity, Gusev will allow the testing of a large spectrum of hypotheses with the complete suite of MER instruments. Evidence consistent with long-lived lake episodes exist in the landing ellipse area. They might offer a unique opportunity to study, for the first time, Martian aqueous sediments and minerals formed in situ in their geological context. We review the geological history and diversity of the landing site, the science hypotheses that can be tested during the MER mission, and the relevance of Gusev to the MER mission objectives and payload
Crowdsourcing Fungal Biodiversity : Revision of Inaturalist Observations in Northwestern Siberia
The paper presents the first analysis of crowdsourcing data of all observations of fungi (including lichens) and myxomycetes in Northwestern Siberia uploaded to iNaturalist.org to date (24.02.2022). The Introduction presents an analysis of fungal diversity crowdsourcing globally, in Russia, and in the region of interest. Materials and methods describe the protocol of uploading data to iNaturalist.org, the structure of the crowdsourcing community. initiative to revise the accumulated data. procedures of data analysis, and compilation of a dataset of revised crowdsourced data. The Results present the analysis of accumulated data by several parameters: temporal, geographical and taxonomical scope, observation and identification efforts, identifiability of various taxa, species novelty and Red Data Book categories and the protection status of registered observations. The Discussion provides data on usability of crowdsourcing data for biodiversity research and conservation of fungi, including pros and contras. The Electronic Supplements to the paper include an annotated checklist of observations of protected species with information on Red Data Book categories and the protection status, and an annotated checklist of regional records of new taxa. The paper is supplemented with a dataset of about 15 000 revised and annotated records available through Global Biodiversity Information Facility (GBIF). The tradition of crowdsourcing is rooted in mycological societies around the world, including Russia. In Northwestern Siberia, a regional mycological club was established in 2018, encouraging its members to contribute observations of fungi on iNaturalist.org. A total of about 15 000 observations of fungi and myxomycetes were uploaded so far, by about 200 observers, from three administrative regions (Yamalo-Nenetsky Autonomous Okrug, Khanty-Mansi Autonomous Okrug, and Tyumen Region). The geographical coverage of crowdsourcing observations remains low. However. the observation activity has increased in the last four years. The goal of this study consisted of a collaborative effort of professional mycologists invited to help with the identification of these observations and analysis of the accumulated data. As a result, all observations were reviewed by at least one expert. About half of all the observations have been identified reliably to the species level and received Research Grade status. Of those, 90 species (195 records) represented records of taxa new to their respective regions: 876 records of 53 species of protected species provide important data for conservation programmes. The other half of the observations consists of records still under-identified for various reasons: poor quality photographs, complex taxa (impossible to identify without microscopic or molecular study). or lack of experts in a particular taxonomic group. The Discussion section summarises the pros and cons of the use of crowdsourcing for the study and conservation of regional fungal diversity, and summarises the dispute on this subject among mycologists. Further research initiatives involving crowdsourcing data must focus on an increase in the quality of observations and strive to introduce the habit of collecting voucher specimens among the community of amateurs. The timely feedback from experts is also important to provide quality and the increase of personal involvement.Peer reviewe
No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations
The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today. A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations. These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere, which-given methane's lifetime of several centuries-predicts an even, well mixed distribution of methane. Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections. We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally
Martian dust storm impact on atmospheric H<sub>2</sub>O and D/H observed by ExoMars Trace Gas Orbiter
Global dust storms on Mars are rare but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere, primarily owing to solar heating of the dust. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes, as well as a decrease in the water column at low latitudes. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere
Assessment of methane levels throughout a temperate reservoir area using remote sensing data
Aquatic ecosystems are significant methane (CH4) emitters, potentially surpassing direct anthropogenic sources. Despite the advantages of satellite monitoring, its application for assessing methane content over freshwater bodies is not commonly encountered in scientific publications. Therefore, this study aims to assess methane levels in the atmosphere in and around the temperate reservoir area (Kuibyshev Reservoir, Russia) using Sentinel-5P/TROPOMI remote sensing data. The spatial distribution of CH4 content across the study area was heterogeneous and exhibited a latitudinal dependence, with concentrations decreasing from south to north. Seasonal variability in methane levels is observed, with the lowest values in spring and the highest in autumn. The average CH4 concentration over the period 2019–2023 was 1860±13 ppb. Additionally, a consistent trend of increasing annual methane background levels has been observed (up to 1878±11 ppb in 2023). Differences in methane levels are noted across different land cover types, with higher values typically observed above anthropogenically transformed landscapes, while minimal ones are found over extensive forested areas and the waters of the Kuibyshev Reservoir