73 research outputs found

    On the Velocity of Light Signals in the Deep Underwater Neutrino Experiments

    Get PDF
    During the last few years deep underwater neutrino telescopes of a new generation with dimensions close to 100 m or more were taken into operation. For the correct track reconstruction and for the interpretation of light pulses from calibration lasers one has to use the group velocity for light signals. The difference between group velocity leads to an additional delay of about 10 ns for a distance of 100 m between light source and photjmultiplier. From the time of the appearance of the first projects of deep underwater neutrino telescopes in the middle of 70th this fact was never mentioned in the literature.Comment: 4 pages, 2 figure

    Characterization of Ti-B-C-N Nanocomposite Coatings

    Get PDF
    Nanocomposite Ti-B-N-C coatings were deposited by magnetron sputtering of TiN and B4C targets in the argon-nitrogen atmosphere at different nitrogen flow rates (FN2). The structure, chemical bonding and mechanical properties were investigated. The results of the investigations of the nanocomposite, TiN and BCN coatings show that the Ti-B-C-N coatings consist of the TiNC nanocrystals (3.4 – 6.5 nm) embedded into the amorphous matrix that consists of amorphous boron nitrogen (a-BN) and amorphous carbon (a-C). The coatings contain a small admixture of titanium oxides that are aggregated at the grain boundaries. The coatings deposited at high nitrogen flow rates were textured. An introduction of nitrogen prompts the formation of the nanocrystallites of the TiN-TiC solid solutions and the a-BN amorphous tissue, which, in turn, causes the improvement of the mechanical properties of the Ti-B-C-N coatings. The best samples ex-hibited nanohardnes above 39 GPa. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3505

    Latest results of the Tunka Radio Extension (ISVHECRI2016)

    Get PDF
    The Tunka Radio Extension (Tunka-Rex) is an antenna array consisting of 63 antennas at the location of the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) in Eastern Siberia, nearby Lake Baikal. Tunka-Rex is triggered by the air-Cherenkov array Tunka-133 during clear and moonless winter nights and by the scintillator array Tunka-Grande during the remaining time. Tunka-Rex measures the radio emission from the same air-showers as Tunka-133 and Tunka-Grande, but with a higher threshold of about 100 PeV. During the first stages of its operation, Tunka-Rex has proven, that sparse radio arrays can measure air-showers with an energy resolution of better than 15\% and the depth of the shower maximum with a resolution of better than 40 g/cm\textsuperscript{2}. To improve and interpret our measurements as well as to study systematic uncertainties due to interaction models, we perform radio simulations with CORSIKA and CoREAS. In this overview we present the setup of Tunka-Rex, discuss the achieved results and the prospects of mass-composition studies with radio arrays.Comment: proceedings of ISVHECRI2016 conferenc

    The amplitude calibration of the TUNKA radio extension (Tunka-Rex)

    Get PDF
    Tunka-Rex is an experiment for the radio detection of cosmic-ray air showers in Siberia. It consists of 25 radio antennas, distributed over an area of 1 km2. It is co-located with Tunka-133, an air-Cherenkov detector for cosmic-ray air showers. Triggered by Tunka-133, Tunka-Rex records the radio signal, emitted by air showers with energies above 1017 eV. Its goal is to probe the capabilities of a radio detector, especially for the determination of the energy and elemental composition of cosmic ray primaries. To compare the measurements of Tunka-Rex to other radio detectors or to models describing the radio emission, the radio signal in each station has to be reconstructed in terms of physical units. Therefore, all hardware components have to be calibrated. We show how the calibration is performed and compare it to simulations

    Registration of atmospheric neutrinos with the Baikal neutrino telescope

    Full text link
    We present first neutrino induced events observed with a deep underwater neutrino telescope. Data from 70 days effective life time of the BAIKAL prototype telescope NT-96 have been analyzed with two different methods. With the standard track reconstruction method, 9 clear upward muon candidates have been identified, in good agreement with 8.7 events expected from Monte Carlo calculations for atmospheric neutrinos. The second analysis is tailored to muons coming from close to the opposite zenith. It yields 4 events, compared to 3.5 from Monte Carlo expectations. From this we derive a 90 % upper flux limit of 1.1 * 10^-13 cm^-2 sec^-1 for muons in excess of those expected from atmospheric neutrinos with zenith angle > 150 degrees and energy > 10GeV.Comment: 20 pages, 11 figure

    First analysis of inclined air showers detected by Tunka-Rex

    Get PDF
    The Tunka Radio Extension (Tunka-Rex) is a digital antenna array for the detection of radio emission from cosmic-ray air showers in the frequency band of 30 to 80 MHz and for primary energies above 100 PeV. The standard analysis of Tunka-Rex includes events with zenith angle of up to 50?. This cut is determined by the efficiency of the external trigger. However, due to the air-shower footprint increasing with zenith angle and due to the more efficient generation of radio emission (the magnetic field in the Tunka valley is almost vertical), there are a number of ultra-high-energy inclined events detected by Tunka-Rex. In this work we present a first analysis of a subset of inclined events detected by Tunka-Rex. We estimate the energies of the selected events and test the efficiency of Tunka-Rex antennas for detection of inclined air showers
    corecore