432 research outputs found
Towards operational remote sensing of forest carbon balance across Northern Europe
Monthly averages of ecosystem respiration (ER), gross primary production (GPP) and net ecosystem exchange (NEE) over Scandinavian forest sites were estimated using regression models driven by air temperature (AT), absorbed photosynthetically active radiation (APAR) and vegetation indices. The models were constructed and evaluated using satellite data from Terra/MODIS and measured data collected at seven flux tower sites in northern Europe. Data used for model construction was excluded from the evaluation. Relationships between ground measured variables and the independent variables were investigated. <br><br> It was found that the enhanced vegetation index (EVI) at 250 m resolution was highly noisy for the coniferous sites, and hence, 1 km EVI was used for the analysis. Linear relationships between EVI and the biophysical variables were found: correlation coefficients between EVI and GPP, NEE, and AT ranged from 0.90 to 0.79 for the deciduous data, and from 0.85 to 0.67 for the coniferous data. Due to saturation, there were no linear relationships between normalized difference vegetation index (NDVI) and the ground measured parameters found at any site. APAR correlated better with the parameters in question than the vegetation indices. Modeled GPP and ER were in good agreement with measured values, with more than 90% of the variation in measured GPP and ER being explained by the coniferous models. The site-specific respiration rate at 10&deg;C (<i>R</i><sub>10</sub>) was needed for describing the ER variation between sites. Even though monthly NEE was modeled with less accuracy than GPP, 61% and 75% (dec. and con., respectively) of the variation in the measured time series was explained by the model. These results are important for moving towards operational remote sensing of forest carbon balance across Northern Europe
Brightening of Long, Polymer-Wrapped Carbon Nanotubes by sp Functionalization in Organic Solvents
The functionalization of semiconducting single-walled carbon nanotubes
(SWNTs) with sp defects that act as luminescent exciton traps is a
powerful means to enhance their photoluminescence quantum yield (PLQY) and to
add optical properties. However, the synthetic methods employed to introduce
these defects are so far limited to aqueous dispersions of surfactant-coated
SWNTs, often with short tube lengths, residual metallic nanotubes and poor film
formation properties. In contrast to that, dispersions of polymer-wrapped SWNTs
in organic solvents feature unrivaled purity, higher PLQY and are easily
processed into thin films for device applications. Here, we introduce a simple
and scalable phase-transfer method to solubilize diazonium salts in organic
nonhalogenated solvents for the controlled reaction with polymer-wrapped SWNTs
to create luminescent aryl defects. Absolute PLQY measurements are applied to
reliably quantify the defect-induced brightening. The optimization of defect
density and trap depth results in PLQYs of up to 4 % with 90 % of photons
emitted through the defect channel. We further reveal the strong impact of
initial SWNT quality and length on the relative brightening by sp
defects. The efficient and simple production of large quantities of
defect-tailored polymer-sorted SWNTs enables aerosol-jet printing and
spin-coating of thin films with bright and nearly reabsorption-free defect
emission, which are desired for carbon nanotube-based near-infrared
light-emitting devices
The charcoal trap: Miombo forests and the energy needs of people
<p>Abstract</p> <p>Background</p> <p>This study evaluates the carbon dioxide and other greenhouse gas fluxes to the atmosphere resulting from charcoal production in Zambia. It combines new biomass and flux data from a study, that was conducted in a <it>miombo </it>woodland within the Kataba Forest Reserve in the Western Province of Zambia, with data from other studies.</p> <p>Results</p> <p>The measurements at Kataba compared protected area (3 plots) with a highly disturbed plot outside the forest reserve and showed considerably reduced biomass after logging for charcoal production. The average aboveground biomass content of the reserve (Plots 2-4) was around 150 t ha<sup>-1</sup>, while the disturbed plot only contained 24 t ha<sup>-1</sup>. Soil carbon was not reduced significantly in the disturbed plot. Two years of eddy covariance measurements resulted in net ecosystem exchange values of -17 ± 31 g C m<sup>-2 </sup>y<sup>-1</sup>, in the first and 90 ± 16 g C m<sup>-2 </sup>in the second year. Thus, on the basis of these two years of measurement, there is no evidence that the <it>miombo </it>woodland at Kataba represents a present-day carbon sink. At the country level, it is likely that deforestation for charcoal production currently leads to a per capita emission rate of 2 - 3 t CO<sub>2 </sub>y<sup>-1</sup>. This is due to poor forest regeneration, although the resilience of <it>miombo </it>woodlands is high. Better post-harvest management could change this situation.</p> <p>Conclusions</p> <p>We argue that protection of <it>miombo </it>woodlands has to account for the energy demands of the population. The production at national scale that we estimated converts into 10,000 - 15,000 GWh y<sup>-1 </sup>of energy in the charcoal. The term "Charcoal Trap" we introduce, describes the fact that this energy supply has to be substituted when woodlands are protected. One possible solution, a shift in energy supply from charcoal to electricity, would reduce the pressure of forests but requires high investments into grid and power generation. Since Zambia currently cannot generate this money by itself, the country will remain locked in the charcoal trap such as many other of its African neighbours. The question arises whether and how money and technology transfer to increase regenerative electrical power generation should become part of a post-Kyoto process. Furthermore, better inventory data are urgently required to improve knowledge about the current state of the woodland usage and recovery. Net greenhouse gas emissions could be reduced substantially by improving the post-harvest management, charcoal production technology and/or providing alternative energy supply.</p
Greenhouse gas emissions from marine decommissioned hydrocarbon wells: leakage detection, monitoring and mitigation strategies
Highlights
• Gas release from wells may counteract efforts to mitigate greenhouse gas emissions.
• An approach for assessing methane release from marine decommissioned wells.
• This gas release largely depends on the presence of shallow gas accumulations.
• Methane release from hydrocarbon wells represents a major source in the North Sea.
Abstract
Hydrocarbon gas emissions from with decommissioned wells are an underreported source of greenhouse gas emissions in oil and gas provinces. The associated emissions may partly counteract efforts to mitigate greenhouse gas emissions from fossil fuel infrastructure. We have developed an approach for assessing methane leakage from marine decommissioned wells based on a combination of existing regional industrial seismic and newly acquired hydroacoustic water column imaging data from the Central North Sea. Here, we present hydroacoustic data which show that 28 out of 43 investigated wells release gas from the seafloor into the water column. This gas release largely depends on the presence of shallow gas accumulations and their distance to the wells. The released gas is likely primarily biogenic methane from shallow sources. In the upper 1,000 m below the seabed, gas migration is likely focused along drilling-induced fractures around the borehole or through non-sealing barriers. Combining available direct measurements for methane release from marine decommissioned wells with our leakage analysis suggests that gas release from investigated decommissioned hydrocarbon wells is a major source of methane in the North Sea (0.9-3.7 [95% confidence interval = 0.7-4.2] kt yr−1 of CH4 for 1,792 wells in the UK sector of the Central North Sea). This means hydrocarbon gas emissions associated with marine hydrocarbon wells are not significant for the global greenhouse gas budget, but have to be considered when compiling regional methane budgets
Building a Global Ecosystem Research Infrastructure to Address Global Grand Challenges for Macrosystem Ecology
The development of several large-, "continental"-scale ecosystem research infrastructures over recent decades has provided a unique opportunity in the history of ecological science. The Global Ecosystem Research Infrastructure (GERI) is an integrated network of analogous, but independent, site-based ecosystem research infrastructures (ERI) dedicated to better understand the function and change of indicator ecosystems across global biomes. Bringing together these ERIs, harmonizing their respective data and reducing uncertainties enables broader cross-continental ecological research. It will also enhance the research community capabilities to address current and anticipate future global scale ecological challenges. Moreover, increasing the international capabilities of these ERIs goes beyond their original design intent, and is an unexpected added value of these large national investments. Here, we identify specific global grand challenge areas and research trends to advance the ecological frontiers across continents that can be addressed through the federation of these cross-continental-scale ERIs.Peer reviewe
Refined high-content imaging-based phenotypic drug screening in zebrafish xenografts
Zebrafish xenotransplantation models are increasingly applied for phenotypic drug screening to identify small compounds for precision oncology. Larval zebrafish xenografts offer the opportunity to perform drug screens at high-throughput in a complex in vivo environment. However, the full potential of the larval zebrafish xenograft model has not yet been realized and several steps of the drug screening workflow still await automation to increase throughput. Here, we present a robust workflow for drug screening in zebrafish xenografts using high-content imaging. We established embedding methods for high-content imaging of xenografts in 96-well format over consecutive days. In addition, we provide strategies for automated imaging and analysis of zebrafish xenografts including automated tumor cell detection and tumor size analysis over time. We also compared commonly used injection sites and cell labeling dyes and show specific site requirements for tumor cells from different entities. We demonstrate that our setup allows us to investigate proliferation and response to small compounds in several zebrafish xenografts ranging from pediatric sarcomas and neuroblastoma to glioblastoma and leukemia. This fast and cost-efficient assay enables the quantification of anti-tumor efficacy of small compounds in large cohorts of a vertebrate model system in vivo. Our assay may aid in prioritizing compounds or compound combinations for further preclinical and clinical investigations
Influence of Spring and Autumn Phenological Transitions on Forest Ecosystem Productivity
We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an ¿extra¿ day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.JRC.H.5-Land Resources Managemen
Surface-atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling
Recent advances in laser spectrometry offer new opportunities to investigate ecosystem-atmosphere exchange of environmentally relevant trace gases. In this study, we demonstrate the applicability of a quantum cascade laser (QCL) absorption spectrometer to continuously measure ammonia concentrations at high time resolution and thus to quantify the net exchange between a seminatural peatland ecosystem and the atmosphere based on the eddy-covariance approach. Changing diurnal patterns of both ammonia concentration and fluxes were found during different periods of the campaign. We observed a clear tipping point in early spring with decreasing ammonia deposition velocities and increasingly bidirectional fluxes that occurred after the switch from dormant vegetation to CO2 uptake but was triggered by a significant weather change. While several biophysical parameters such as temperature, radiation, and surface wetness were identified to partially regulate ammonia exchange at the site, the seasonal concentration pattern was clearly dominated by agricultural practices in the surrounding area. Comparing the results of a compensation point model with our measurement-based flux estimates showed considerable differences in some periods of the campaign due to overestimation of non-stomatal resistances caused by low acid ratios. The total cumulative campaign exchange of ammonia after 9 weeks, however, differed only in a 6% deviation with 911 and 857 gNH(3)-N ha(-1) deposition being found by measurements and modeling, respectively. Extrapolating our findings to an entire year, ammonia deposition was lower than reported by Hurkuck et al. (2014) for the same site in previous years using denuder systems. This was likely due to a better representation of the emission component in the net signal of eddy-covariance fluxes as well as better adapted site-specific parameters in the model. Our study not only stresses the importance of high-quality measurements for studying and assessing land surface-atmosphere interactions but also demonstrates the potential of QCL spectrometers for continuous observation of reactive nitrogen species as important additional instruments within long-term monitoring research infrastructures such as ICOS or NEON at sites with strong nearby ammonia sources leading to relatively high mean background concentrations and fluxes.Peer reviewe
Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 2: Untangling climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials
The effects of atmospheric nitrogen deposition (N) on carbon (C) sequestration in forests have often been assessed by relating differences in productivity to spatial variations of N across a large geographic domain. These correlations generally suffer from covariation of other confounding variables related to climate and other growth-limiting factors, as well as large uncertainties in total (dry+wet) reactive nitrogen (N) deposition.We propose a methodology for untangling the effects of N from those of meteorological variables, soil water retention capacity and stand age, using a mechanistic forest growth model in combination with eddy covariance CO exchange fluxes from a Europe-wide network of 22 forest flux towers. Total N deposition rates were estimated from local measurements as far as possible. The forest data were compared with data from natural or semi-natural, non-woody vegetation sites. The response of forest net ecosystem productivity to nitrogen deposition (dNEP= dN) was estimated after accounting for the effects on gross primary productivity (GPP) of the co-correlates by means of a meta-modelling standardization procedure, which resulted in a reduction by a factor of about 2 of the uncorrected, apparent dGPP/dN value. This model-enhanced analysis of the C and N flux observations at the scale of the European network suggests a mean overall dNEP/dN response of forest lifetime C sequestration to N of the order of 40–50 g C per g N, which is slightly larger but not significantly different from the range of estimates published in the most recent reviews. Importantly, patterns of gross primary and net ecosystem productivity versus N were non-linear, with no further growth responses at high N levels (N >2.5–3 gNm yr) but accompanied by increasingly large ecosystem N losses by leaching and gaseous emissions. The reduced increase in productivity per unit N deposited at high N levels implies that the forecast increased N emissions and increased Ndep levels in large areas of Asia may not positively impact the continent’s forest CO sink. The large level of unexplained variability in observed carbon sequestration efficiency (CSE) across sites further adds to the uncertainty in the dC/dN response
- …