22 research outputs found

    Shallow subsurface heat recycling is a sustainable global space heating alternative

    Get PDF
    Despite the global interest in green energy alternatives, little attention has focused on the large-scale viability of recycling the ground heat accumulated due to urbanization, industrialization and climate change. Here we show this theoretical heat potential at a multi-continental scale by first leveraging datasets of groundwater temperature and lithology to assess the distribution of subsurface thermal pollution. We then evaluate subsurface heat recycling for three scenarios: a status quo scenario representing present-day accumulated heat, a recycled scenario with ground temperatures returned to background values, and a climate change scenario representing projected warming impacts. Our analyses reveal that over 50% of sites show recyclable underground heat pollution in the status quo, 25% of locations would be feasible for long-term heat recycling for the recycled scenario, and at least 83% for the climate change scenario. Results highlight that subsurface heat recycling warrants consideration in the move to a low-carbon economy in a warmer world

    Theory, tools, and multidisciplinary applications for tracing groundwater fluxes from temperature profiles

    Get PDF
    Quantifying groundwater fluxes to and from deep aquifers or shallow sediment is a critical task faced by researchers and practitioners from many environmental science disciplines including hydrology, hydrogeology, ecology, climatology, and oceanography. Groundwater discharge to inland and coastal water bodies influences their water budgets, thermal regimes, and biogeochemistry. Conversely, downward water flow from the land surface or from surface water bodies to underlying aquifers represents an important water flux that must be quantified for sustainable groundwater management. Because these vertical subsurface flows are slow and typically diffuse, they cannot be measured directly and must rather be estimated using groundwater tracers. Heat is a naturally occurring groundwater tracer that is ubiquitous in the subsurface and readily measured. Most of the academic literature has focused on groundwater temperature tracing methods capitalizing on the propagation of diel temperature sine waves into sediment beneath surface water bodies. Such methods rely on temperature–time series to infer groundwater fluxes and are typically only viable in the shallow subsurface and in locations with focused groundwater fluxes. Alternative methods that utilize temperature–depth profiles are applicable across a broader range of hydrologic environments, and point‐in‐time measurements can be quickly taken to cover larger spatial scales. Applications of these methods have been impeded due in part to the lack of understanding regarding their potential applications and limitations. Herein, we highlight relevant theory, thermal data collection techniques, and recent diverse field applications to stimulate further multidisciplinary uptake of thermal groundwater tracing methods that rely on temperature–depth profiles

    Present and Future Thermal Regimes of Intertidal Groundwater Springs in a Threatened Coastal Ecosystem

    Get PDF
    In inland settings, groundwater discharge thermally modulates receiving surface water bodies and provides localized thermal refuges; however, the thermal influence of intertidal springs on coastal waters and their thermal sensitivity to climate change are not well studied. We addressed this knowledge gap with a field- and model-based study of a threatened coastal lagoon ecosystem in southeastern Canada. We paired analyses of drone-based thermal imagery with in situ thermal and hydrologic monitoring to estimate discharge to the lagoon from intertidal springs and groundwater-dominated streams in summer 2020. Results, which were generally supported by independent radon-based groundwater discharge estimates, revealed that combined summertime spring inflows (0.047 m3 s-1) were comparable to combined stream inflows (0.050m3 s-1). Net advection values for the streams and springs were also comparable to each other but were 2 orders of magnitude less than the downwelling shortwave radiation across the lagoon. Although lagoon-scale thermal effects of groundwater inflows were small compared to atmospheric forcing, spring discharge dominated heat transfer at a local scale, creating pronounced cold-water plumes along the shoreline. A numerical model was used to interpret measured groundwater temperature data and investigate seasonal and multi-decadal groundwater temperature patterns. Modelled seasonal temperatures were used to relate measured spring temperatures to their respective aquifer source depths, while multi-decadal simulations forced by historic and projected climate data were used to assess long-term groundwater warming. Based on the 2020-2100 climate scenarios (for which 5-year-averaged air temperature increased up to 4.32°), modelled 5-year-averaged subsurface temperatures increased 0.08-2.23° in shallow groundwater (4.2 m depth) and 0.32-1.42 degrees in the deeper portion of the aquifer (13.9 m), indicating the depth dependency of warming. This study presents the first analysis of the thermal sensitivity of groundwater-dependent coastal ecosystems to climate change and indicates that coastal ecosystem management should consider potential impacts of groundwater warming

    Pore water exchange-driven inorganic carbon export from intertidal salt marshes

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tamborski, J. J., Eagle, M., Kurylyk, B. L., Kroeger, K. D., Wang, Z. A., Henderson, P., & Charette: 1774-1792, https://doi.org/10.1002/lno.11721.Respiration in intertidal salt marshes generates dissolved inorganic carbon (DIC) that is exported to the coastal ocean by tidal exchange with the marsh platform. Understanding the link between physical drivers of water exchange and chemical flux is a key to constraining coastal wetland contributions to regional carbon budgets. The spatial and temporal (seasonal, annual) variability of marsh pore water exchange and DIC export was assessed from a microtidal salt marsh (Sage Lot Pond, Massachusetts). Spatial variability was constrained from 224Ra : 228Th disequilibria across two hydrologic units within the marsh sediments. Disequilibrium between the more soluble 224Ra and its sediment-bound parent 228Th reveals significant pore water exchange in the upper 5 cm of the marsh surface (0–36 L m−2 d−1) that is most intense in low marsh elevation zones, driven by tidal overtopping. Surficial sediment DIC transport ranges from 0.0 to 0.7 g C m−2 d−1. The sub-surface sediment horizon intersected by mean low tide was disproportionately impacted by tidal pumping (20–80 L m−2 d−1) and supplied a seasonal DIC flux of 1.7–5.4 g C m−2 d−1. Export exceeded 10 g C m−2 d−1 for another marsh unit, demonstrating that fluxes can vary substantially across salt marshes under similar conditions within the same estuary. Seasonal and annual variability in marsh pore water exchange, constrained from tidal time-series of radium isotopes, was driven in part by variability in mean sea level. Rising sea levels will further inundate high marsh elevation zones, which may lead to greater DIC export.This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund, through the Ocean Frontier Institute. Additional funding was provided by the U.S. Geological Survey (USGS) Coastal & Marine Geology Program and the USGS Land Change Science Program's LandCarbon program

    Closing the gap between science and management of cold-water refuges in rivers and streams

    Get PDF
    Human activities and climate change threaten coldwater organisms in freshwater eco-systems by causing rivers and streams to warm, increasing the intensity and frequency of warm temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches of relatively cool water that are used by coldwater organisms for thermal relief and short-term survival. Globally, cohesive management approaches are needed that consider interlinked physical, biological, and social factors of cold-water refuges. We review current understanding of cold-water refuges, identify gaps between science and management, and evaluate policies aimed at protecting thermally sensitive species. Existing policies include designating cold-water habitats, restricting fishing during warm periods, and implementing threshold temperature standards or guidelines. However, these policies are rare and uncoordinated across spatial scales and often do not consider input from Indigenous peoples. We propose that cold-water refuges be managed as dis-tinct operational landscape units, which provide a social and ecological context that is relevant at the watershed scale. These operational landscape units provide the founda-tion for an integrated framework that links science and management by (1) mapping and characterizing cold-water refuges to prioritize management and conservation actions, (2) leveraging existing and new policies, (3) improving coordination across jurisdictions, and (4) implementing adaptive management practices across scales. Our findings show that while there are many opportunities for scientific advancement, the current state of the sciences is sufficient to inform policy and management. Our proposed framework pro-vides a path forward for managing and protecting cold-water refuges using existing and new policies to protect coldwater organisms in the face of global change. behavioral thermoregulation, climate change adaptation, lotic ecosystem management, refugia, salmonids, temperature, thermal heterogeneity, thermal refugespublishedVersio

    Closing the gap between science and management of cold‐water refuges in rivers and streams

    Get PDF
    Human activities and climate change threaten coldwater organisms in freshwater ecosystems by causing rivers and streams to warm, increasing the intensity and frequency of warm temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches of relatively cool water that are used by coldwater organisms for thermal relief and short-term survival. Globally, cohesive management approaches are needed that consider interlinked physical, biological, and social factors of cold-water refuges. We review current understanding of cold-water refuges, identify gaps between science and management, and evaluate policies aimed at protecting thermally sensitive species. Existing policies include designating cold-water habitats, restricting fishing during warm periods, and implementing threshold temperature standards or guidelines. However, these policies are rare and uncoordinated across spatial scales and often do not consider input from Indigenous peoples. We propose that cold-water refuges be managed as distinct operational landscape units, which provide a social and ecological context that is relevant at the watershed scale. These operational landscape units provide the foundation for an integrated framework that links science and management by (1) mapping and characterizing cold-water refuges to prioritize management and conservation actions, (2) leveraging existing and new policies, (3) improving coordination across jurisdictions, and (4) implementing adaptive management practices across scales. Our findings show that while there are many opportunities for scientific advancement, the current state of the sciences is sufficient to inform policy and management. Our proposed framework provides a path forward for managing and protecting cold-water refuges using existing and new policies to protect coldwater organisms in the face of global change

    Limiting External Absorptivity of UAV-Based Uncooled Thermal Infrared Sensors Increases Water Temperature Measurement Accuracy

    No full text
    Thermal mapping of surface waters and the land surface via UAVs offers exciting opportunities in many scientific disciplines; however, unresolved issues persist related to accuracy and drift of uncooled microbolometric thermal infrared (TIR) sensors. Curiously, most commercially available UAV-based TIR sensors are black, which will theoretically facilitate heating of the uncooled TIR sensor via absorbed solar radiation. Accordingly, we tested the hypothesis that modifying the surface absorptivity of uncooled TIR sensors can reduce thermal drift by limiting absorptance and associated microbolometer heating. We used two identical uncooled TIR sensors (DJI Zenmuse XT2) but retrofitted one with polished aluminum foil to alter the surface absorptivity and compared the temperature measurements from each sensor to the accurate measurements from instream temperature loggers. In addition, because TIR sensors are passive and measure longwave infrared radiation emitted from the environment, we tested the hypotheses that overcast conditions would reduce solar irradiance, and therefore induce thermal drift, and that increases in air temperature would induce thermal drift. The former is in contrast with the conceptual model of others who have proposed that flying in overcast conditions would increase sensor accuracy. We found the foil-shielded sensor yielded temperatures that were on average 2.2 °C more accurate than those of the matte black sensor (p < 0.0001). Further, we found positive correlations between light intensity (a proxy for incoming irradiance) and increased sensor accuracy for both sensors. Interestingly, light intensity explained 73% of the accuracy variability for the black sensor, but only 40% of the variability in accuracy deviations for the foil-shielded sensor. Unsurprisingly, an increase in air temperature led to a decrease in accuracy for both sensors, where air temperature explained 14% of the variability in accuracy for the black sensor and 31% of the accuracy variability for the foil-shielded sensor. We propose that the discrepancy between the amount of variability explained by light intensity and air temperature is due to changes in the heat energy budget arising from changes in the surface absorptivity. Additionally, we suggest fine-scale changes in river-bed reflectance led to errors in UAV thermal measurements. We conclude with a suite of guidelines for increasing the accuracy of uncooled UAV-based thermal mapping

    Observed groundwater temperature response to recent climate change

    No full text
    Climate change is known to have a considerable influence on many components of the hydrological cycle. Yet, the implications for groundwater temperature, as an important driver for groundwater quality, thermal use and storage, are not yet comprehensively understood. Furthermore, few studies have examined the implications of climate-change-induced groundwater temperature rise for groundwater-dependent ecosystems. Here, we examine the coupling of atmospheric and groundwater warming by employing stochastic and deterministic models. Firstly, several decades of temperature time series are statistically analyzed with regard to climate regime shifts (CRSs) in the long-term mean. The observed increases in shallow groundwater temperatures can be associated with preceding positive shifts in regional surface air temperatures, which are in turn linked to global air temperature changes. The temperature data are also analyzed with an analytical solution to the conduction–advection heat transfer equation to investigate how subsurface heat transfer processes control the propagation of the surface temperature signals into the subsurface. In three of the four monitoring wells, the predicted groundwater temperature increases driven by the regime shifts at the surface boundary condition generally concur with the observed groundwater temperature trends. Due to complex interactions at the ground surface and the heat capacity of the unsaturated zone, the thermal signals from distinct changes in air temperature are damped and delayed in the subsurface, causing a more gradual increase in groundwater temperatures. These signals can have a significant impact on large-scale groundwater temperatures in shallow and economically important aquifers. These findings demonstrate that shallow groundwater temperatures have responded rapidly to recent climate change and thus provide insight into the vulnerability of aquifers and groundwater-dependent ecosystems to future climate change.ISSN:1027-5606ISSN:1607-793

    Increasing Winter Baseflow in Response to Permafrost Thaw and Precipitation Regime Shifts in Northeastern China

    No full text
    Rapid permafrost thaw and precipitation regime shifts are altering surface and subsurface hydrological processes in arctic and subarctic watersheds. Long-term data (40 years) from two large permafrost watersheds in northeastern China, the Tahe River and Duobukuer River watersheds, indicate that winter baseflows are characterized by significant positive trends of 1.7% and 2.5%·year−1, respectively. Winter baseflows exhibited statistically significant positive correlations with mean annual air temperature and the thawing index, an indicator of permafrost degradation, for both watersheds, as well as the increasing annual rainfall fraction of precipitation for the Duobukuer River watershed. Winter baseflows were characterized by a breakpoint in 1989, which lagged behind the mean annual air temperature breakpoint by only two years. The statistical analyses suggest that the increases in winter baseflow are likely related to enhanced groundwater storage and winter groundwater discharge caused by permafrost thaw and are potentially also due to an increase in the wet season rainfall. These hydrological trends are first apparent in marginal areas of permafrost distribution and are expected to shift northward towards formerly continuous permafrost regions in the context of future climate warming
    corecore