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Abstract. In inland settings, groundwater discharge ther-
mally modulates receiving surface water bodies and pro-
vides localized thermal refuges; however, the thermal influ-
ence of intertidal springs on coastal waters and their thermal
sensitivity to climate change are not well studied. We ad-
dressed this knowledge gap with a field- and model-based
study of a threatened coastal lagoon ecosystem in south-
eastern Canada. We paired analyses of drone-based ther-
mal imagery with in situ thermal and hydrologic monitoring
to estimate discharge to the lagoon from intertidal springs
and groundwater-dominated streams in summer 2020. Re-
sults, which were generally supported by independent radon-
based groundwater discharge estimates, revealed that com-
bined summertime spring inflows (0.047 m3 s−1) were com-
parable to combined stream inflows (0.050 m3 s−1). Net ad-
vection values for the streams and springs were also com-
parable to each other but were 2 orders of magnitude less
than the downwelling shortwave radiation across the lagoon.
Although lagoon-scale thermal effects of groundwater in-
flows were small compared to atmospheric forcing, spring
discharge dominated heat transfer at a local scale, creating
pronounced cold-water plumes along the shoreline.

A numerical model was used to interpret measured
groundwater temperature data and investigate seasonal and
multi-decadal groundwater temperature patterns. Modelled
seasonal temperatures were used to relate measured spring

temperatures to their respective aquifer source depths, while
multi-decadal simulations forced by historic and projected
climate data were used to assess long-term groundwa-
ter warming. Based on the 2020–2100 climate scenarios
(for which 5-year-averaged air temperature increased up
to 4.32◦), modelled 5-year-averaged subsurface tempera-
tures increased 0.08–2.23◦ in shallow groundwater (4.2 m
depth) and 0.32–1.42◦ in the deeper portion of the aquifer
(13.9 m), indicating the depth dependency of warming. This
study presents the first analysis of the thermal sensitiv-
ity of groundwater-dependent coastal ecosystems to climate
change and indicates that coastal ecosystem management
should consider potential impacts of groundwater warming.

1 Introduction

Global freshwater temperatures have been increasing in re-
sponse to changes to climate and land cover (Desbruyères et
al., 2017; IPCC, 2014; Isaak et al., 2017; Liu et al., 2020).
Water temperature is a critical consideration in aquatic eco-
physiology, as it influences the metabolic functions of all
organisms (e.g., Morash et al., 2021) and the biogeochem-
istry of aquatic systems (Ouellet et al., 2020). Cold-water
patches sourced by discrete groundwater inflows to streams
form thermal refuges that enable heat-sensitive species to
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survive periods of elevated thermal stress (Kurylyk et al.,
2015a; Sullivan et al., 2021; Torgersen et al., 2012; Wilbur et
al., 2020). This cooling mechanism depends on the seasonal
stability of groundwater temperature relative to surface water
temperature due to the insulative effect of the ground overly-
ing the source groundwater (Bonan, 2008). In addition to sta-
ble temperatures, focused groundwater discharge locations in
surface water bodies are often characterized by distinct bio-
geochemical conditions preferred by certain aquatic species
(Cantonati et al., 2020; Hayashi and Rosenberry, 2002). Al-
though groundwater-dependent ecosystems may be more re-
silient to seasonal and short-term weather changes, they re-
main susceptible to multi-decadal warming signals that can
penetrate deeper into the subsurface to affect groundwater
temperatures (Bense and Kurylyk, 2017; Gunawardhana and
Kazama, 2011; Menberg et al., 2014; Benz et al., 2022).

Surface water temperatures in inland lotic systems are in-
fluenced by latent, sensible, and radiative heat fluxes at the
water surface, longitudinal heat flux along the channel due
to advection and dispersion, and bed heat fluxes due to fric-
tion, conduction, and advection (Caissie, 2006; Dugdale et
al., 2017), which in turn are controlled by landscape char-
acteristics (O’Sullivan et al., 2019). The thermal regimes of
many coastal aquatic systems are inherently more complex
than freshwater systems as they are additionally influenced
by exchanges with the ocean (e.g., Newton and Mudge,
2003). Furthermore, thermal stratification within coastal wa-
ters may arise due to salinity-induced density differences
(e.g., Danielescu et al., 2009; Newton and Mudge, 2003;
Nunes and Lennon, 1987). These complex thermal processes
and patterns may contribute to the relative lack of study
of coastal thermal regimes compared to inland lotic waters.
However, a few studies have shown that net solar radiation,
latent heat of evaporation, and sensible heat transfer to the
atmosphere are typically the primary thermal drivers in shal-
low coastal waters (e.g., Ji, 2017; Rodríguez-Rodríguez and
Moreno-Ostos, 2006).

Despite the large body of recent work and associated re-
views characterizing river (Caissie, 2006; Dugdale et al.,
2017; Ouellet et al., 2020), ocean (Abraham et al., 2013), and
subsurface thermal regimes (Kurylyk et al., 2014a), relatively
little work has focused on the influence of groundwater on
the temperature of transitional coastal waters (e.g., Chikita et
al., 2015; Rodríguez-Rodríguez and Moreno-Ostos, 2006).
Groundwater may be delivered to the coast via direct (e.g.,
springs) and indirect (i.e., baseflow in streams or rivers) path-
ways and can influence coastal ecosystems (Luijendijk et
al., 2020). As is the case for rivers, groundwater inputs to
coastal environments may generate spatial thermal hetero-
geneity in the receiving water body (e.g., Danielescu et al.,
2009; KarisAllen and Kurylyk, 2021), but the ability of these
cold-water plumes to serve as thermal refuges is less ex-
plored. Further, although some riverine studies have consid-
ered the sensitivity of incoming groundwater to future cli-
mate change (e.g., Hannah and Garner, 2015; Kaandorp et

al., 2019; Kurylyk et al., 2014b), to our knowledge no studies
have investigated the thermal sensitivity of coastal ground-
water discharge to climate change or the potential ecological
consequences. Thermal sensitivity is broadly used in hydrol-
ogy to refer to the change in water temperature due to at-
mospheric forcing (e.g., Kelleher et al., 2012). In the present
context, thermal sensitivity refers to the change in groundwa-
ter temperature in response to climate change, which can be
quantified as the ratio of the change in mean annual ground-
water temperature to the change in mean annual air tempera-
ture (Kurylyk et al., 2015b).

Thermal imaging devices attached to aircraft have been
used to aerially map thermal heterogeneity in coastal zones
resulting from direct groundwater input (e.g., Coluccio et
al., 2020; Danielescu et al., 2009; Lee et al., 2016a). Pre-
vious studies have utilized thermal infrared imagery to esti-
mate local groundwater discharge via empirical relationships
with thermal plume geometry (e.g., Bejannin et al., 2017;
Danielescu et al., 2009; Kang et al., 2019; Kelly et al., 2019b;
Lee et al., 2016a; Mundy et al., 2017; Tamborski et al., 2015).
Small rotary-wing drones have the capacity to inexpensively
collect thermal data with higher temporal and spatial resolu-
tion relative to conventional occupied aircraft (Dugdale et al.,
2022; Lee et al., 2016b), although drone thermal data often
involve additional challenges (e.g., thermal drift and limited
spatial coverage; Dugdale et al., 2019; Kelly et al., 2019a).
Despite these issues, this technology is suitable for determin-
ing relative temperature differences in individual images and
thus can be used to locate focused groundwater inputs that
generate anomalous water temperatures.

Knowledge gaps related to the hydrologic and thermal
functioning of intertidal springs in coastal ecosystems and
their thermal sensitivity to climate change provided the im-
petus for the present study. Our goals were to (1) quan-
tify the discharge and present thermal influence of intertidal
springs in a warm coastal lagoon ecosystem and (2) inves-
tigate how these springs will be thermally impacted by cli-
mate change using a numerical model informed by field data.
Fieldwork and modelling work was conducted for a Ma-
rine Protected Area in eastern Canada with relatively high
water temperatures (up to 33 ◦C) and a thermally stressed
ecosystem with an endemic strain of Irish moss. Drone ther-
mal imaging was paired with in situ thermal and hydro-
logic monitoring to locate and further investigate spring and
groundwater-dominated stream inputs to the lagoon. To in-
terpret our measured spring temperatures and better under-
stand how the aquifer and consequently the springs will re-
spond to future warming, a numerical heat transfer model
calibrated with groundwater data was applied to relate mea-
sured seasonal temperature signals at springs to their respec-
tive aquifer source depths and to simulate depth-dependent
aquifer warming due to climate change. Field data and nu-
merical modelling results were collectively used to assess our
hypothesis that springs within this lagoon will be sourced
from different depths and thus that some springs will man-
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ifest thermal impacts of climate change more quickly than
others.

2 Site description

The study took place in the Basin Head lagoon on the east-
ern shore of Prince Edward Island (PEI) in Atlantic Canada
(Fig. 1). The lagoon was established as a Marine Protected
Area in 2005 under the Oceans Act to protect giant Irish
moss, a unique morphotype of Irish moss (Chondrus cris-
pus) endemic to the lagoon (DFO, 2009). The biomass of gi-
ant Irish moss within the lagoon declined by over 99 % from
1980 to 2008 (DFO, 2009), and thermal stress has been iden-
tified as one of the compounding stressors contributing to its
decline (Joseph et al., 2021). Basin Head lagoon is approxi-
mately 0.6 km2, with water depths that rarely exceed 2 m at
high tide. The lagoon has a mixed semi-diurnal tide, with an
average range of approximately 0.8 m, and is connected to
the ocean by a narrow, artificial channel (Fig. 1b).

PEI is characterized by mean annual precipitation ranging
from 1046 to 1241 mm yr−1 and mean monthly air tempera-
tures from −7.9 to 18.6◦ based on historical records of eight
Environment and Climate Change Canada (ECCC) weather
stations (Rivard et al., 2014). Precipitation is routed from
the Basin Head watershed to the lagoon via groundwater-
dominated streams (Fig. 1b) and direct groundwater dis-
charge pathways. PEI bedrock aquifers are typically weakly
consolidated, very fine to coarse, fractured sandstones with
sparse occurrences of mudstone, conglomerate, and/or brec-
cia (Brandon, 1966; Crowl, 1969a; van de Poll, 1989). Sur-
ficial tills within the study watershed are mainly clay–sand
to sand-phase tills (Crowl, 1969b; Prest, 1973) and are es-
timated to be 5 m deep on average based on local core logs
(Government of PEI, 2019).

3 Methods

Several methods were collectively used to test our primary
hypothesis and undertake our objectives (Fig. 2). These are
described in the following sections but are briefly sum-
marized here to elucidate their interrelationships. Thermal-
based drone mapping and analysis were used to identify
spring locations and delineate the size of their thermal
plumes (box 1; Fig. 2). Selected springs, streams, and a
coastal piezometer (Fig. 1) were instrumented for in situ
thermal and level monitoring (box 2). Thermal plume sizes
(box 1) and flows (box 2) for selected springs underpinned
an empirical relationship between plume area and spring dis-
charge (box 3), which was applied to all springs to esti-
mate total spring discharge to the lagoon (output 1). This
total spring discharge was compared to total groundwater
(springs plus non-point source diffusive flow) discharge esti-
mates from a radon mass balance (box 4). The groundwater
discharge estimates from thermal imagery were also used to

estimate heat advection at the lagoon scale for the springs and
streams (output 1) to assess their ecosystem impacts. Tem-
perature data from a piezometer and well (box 2) were used
in concert with climate data (box 5) to calibrate and drive
a numerical model of groundwater temperature (box 6) for
present and future climate conditions. Depth-dependent sea-
sonal temperature signals in the calibrated model were com-
pared to measured spring temperatures (box 2) to estimate
the aquifer depths feeding those springs. Finally, simulated
future groundwater temperatures (box 6) were used to pro-
vide insight into how springs sourced from different depths
may warm in the future (output 2).

Fieldwork and data collection for this study occurred be-
tween June 2019 and November 2020. Lagoon water temper-
atures typically peak in July and August in the Basin Head
lagoon, which reflects the period of greatest thermal stress
for giant Irish moss. Contrast between groundwater and la-
goon water temperatures is also greatest in July and August,
which is favourable for the detection of springs via ther-
mal infrared imaging. Accordingly, a dense network of sen-
sors (Fig. 1) was temporarily installed between 23 July and
26 August 2020 (i.e., the 35 d “focused study period”), to
provide a more detailed assessment of groundwater discharge
during this critical period. Drone thermal images were cap-
tured in the summer of 2020, and radon sampling occurred
during the summer and fall of 2020.

3.1 Remote thermal sensing and relationship to spring
discharge

Stationary nadir thermal infrared images were taken (within
2 h of low tide, from an elevation of approximately
60 m a.s.l.) of the springs entering the lagoon throughout July
and August 2020. This study used a Matrice 210 RTK v2
aerial drone, equipped with a 13 mm non-radiometric DJI
ZENMUSE™ XT2 thermal infrared camera (DJI, 2018).
Real-time kinetic processing was used for drone navigation
(Kalacska et al., 2020). The exact temperatures of the ther-
mal imagery were not deemed reliable due to internal drift
of the sensor, lack of radiometric correction, and disagree-
ment in thermal readings between frames. However, it was
assumed that the relative temperature data in each frame were
sufficiently precise for the consistent definition of thermal
plume geometry, given the reproducible ability of the XT2 to
identify surficial thermal anomalies confirmed with in situ
temperature measurements. The image analysis process to
identify thermal anomalies and delineate the associated cold-
water plumes was based on previous work (e.g., Kelly et
al., 2019; Roseen, 2002) and is described in the Supplement
(Figs. S1 and S2).

Once the thermal plume areas were delineated, an empir-
ical relationship was developed between discharge measure-
ments for a subset of springs (Sect. 3.2) and their thermal
plume areas (e.g., Danielescu et al., 2009). This plume area–
spring discharge relationship was then applied to estimate

https://doi.org/10.5194/hess-26-4721-2022 Hydrol. Earth Syst. Sci., 26, 4721–4740, 2022
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Figure 1. (a) Location of Basin Head lagoon within Atlantic Canada. (b) Instrument, radon sampling, and identified spring locations within
Basin Head lagoon and watershed over the duration of the study. Temperature sensors installed in the northeast arm of the lagoon channel
were in pairs (labelled as “×2”): one at the top (affixed to a buoy) and bottom (affixed to an anchor) of the water column. Drone surveying was
performed in three flights (dashed green line) after scouting surveys identified spring locations. (c) Enlarged view of the densely instrumented
area designated by the blue box in (b). CTD is conductivity, temperature, and depth. Basemap is attributed to Esri, HERE, Garmin, FAO,
NOAA, USGS, © OpenStreetMap contributors 2000. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

the instantaneous discharge of all ungauged springs from
their respective thermal plume areas captured by drone ther-
mal imagery. Continuous spring discharge to the lagoon was
estimated for the focused study period using a hydrologic
proxy (e.g., Danielescu et al., 2009). Herein, the water lev-
els in our near-shore piezometer (Fig. 1b and Sect. 3.2) were
used as a proxy for the aquifer–lagoon hydraulic gradient and
spring discharge (based on Darcy’s law) via proportionality
constants developed from the drone-based instantaneous dis-
charge estimates (i.e., discharge was assumed to vary linearly
with piezometer water table). Approximately 20 % of the la-
goon’s northwestern shoreline could not be surveyed with the
drone based on proximity to the road or power lines (Fig. 1),
but the presence of springs along this unsurveyed portion has
been confirmed by distant thermal images and in situ mea-
surements. Consequently, the total spring discharge to the la-
goon was estimated by extrapolating the average spring dis-
charge per shoreline length obtained from the surveyed seg-
ments (80 %) to the unsurveyed segment (20 %).

3.2 Hydroclimatic, thermal, and radon monitoring

The manufacturer, model, location, and monitoring durations
for each logger are listed in Table S1, and locations are shown
in Fig. 1. A climate station was installed at the study site to
measure downwelling shortwave radiation, wind speed, rain-
fall, and air temperature. Subsurface modelling and hydraulic
assessments were guided by in situ groundwater monitoring
using a shallow groundwater piezometer (5 m a.s.l.; Fig. 1b)
that fully penetrated the surficial soils to a depth of 4.5 m.
This lowland well was instrumented with a pressure trans-
ducer to monitor well recovery during a slug test, as well as to
provide a record of groundwater elevation, temperature, and
electrical conductivity. Water stage was monitored at 15 min
intervals in the four primary streams (S1 to S4; Fig. 1b) over
the study period using pressure transducers corrected with
air pressure data from the nearest ECCC climate stations
(Station IDs 41903 and 7177; ECCC, 2021a, b). Stream dis-
charges were measured using an acoustic Doppler velocime-
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Figure 2. Diagram showing how the different aspects of this study are interrelated. Boxes indicate key study methods/elements, circles
indicate key study outputs, and arrows and italicized text indicate outputs from one study element that become inputs for another. Q is
discharge; GW is groundwater.

ter and were used to generate rating curves for local streams
(average n= 6 and R2

= 0.94). Other smaller streams (S5
and S6; Fig. 1b) were gauged intermittently, but their flow
rates were < 1 % of the combined flow of streams S1 to S4
and are thus not considered hereafter. Considering the lim-
ited amount of precipitation (36 mm) over the 35 d focused
study period (23 July to 26 August 2020), streamflows were
assumed to be entirely baseflow. This simplification will be
discussed later but is not anticipated to introduce significant
error because PEI streams have frequently been documented
to be 80 %–100 % baseflow during summer (Benson et al.,
2007; Brandon, 1966).

A spring thermal plume area–discharge relationship
(Sect. 3.1 and box 3; Fig. 2) in tidal zones is only valid for a
point in time (i.e.., for a given tidal stage/current and atmo-
spheric conditions) as the thermal and hydraulic mixing is
highly sensitive to environmental conditions (KarisAllen and
Kurylyk, 2021). Accordingly, we were only able to manually
gauge three springs at approximately the same time as the
lagoon-scale thermal mapping conducted on 22 July 2020.
The environmental conditions were ideal for plume mapping
and flow gauging on this date given the high (spring) tidal
range that fully exposed the intertidal springs and the con-
current heat wave that maximized the thermal offset between
the groundwater and lagoon. Volumetric flow measurements
for these three springs (Figs. S3, S5) were conducted at low
tide by constructing custom weirs surrounding their outlets.
To remove any tide-circulated saltwater from our spring dis-

charge estimates (LeRoux et al., 2021), the freshwater com-
ponent discharging from the spring was isolated by estimat-
ing saltwater content via a simple two-component electri-
cal conductivity mixing model. Importantly, while we only
gauged three springs, the thermal plume areas for these
springs span the range of all the mapped thermal plume areas
but one. Thus, discharge rates for ungauged springs are gen-
erally interpolated rather than extrapolated from the plume
area–discharge relationship.

Additional instruments were installed throughout the la-
goon and watershed (Fig. 1) in tandem with stream moni-
toring work to investigate water quality and hydrologic and
hydrodynamic processes. Temperature sensors were installed
at multiple locations along the lagoon channel at the top (af-
fixed to a buoy) and bottom (affixed to an anchor) of the wa-
ter column, three springs outlets (i.e., Springs 2, 5, and 21;
Figs. S3), and the four primary streams (Streams S1–S4) to
characterize their thermal regimes. Spring temperature pat-
terns (i.e., seasonal amplitudes) were compared to the results
of the thermal numerical modelling (Sect. 3.3) to estimate
the aquifer source depth for a given spring following the ef-
fective aquifer depth approach of Kurylyk et al. (2015b) and
Briggs et al. (2018b). The paired spring flow and tempera-
ture data were used to quantify net (sensible) advective heat
fluxes to the lagoon over the focused study period (Kurylyk
et al., 2016):

Jadv = CwQinput(Tinput− Tlagoon), (1)

https://doi.org/10.5194/hess-26-4721-2022 Hydrol. Earth Syst. Sci., 26, 4721–4740, 2022

4. Radon data 
collection & 

analysis 

Focused GWflow 
(all springs) 

1. Drone-based 

3. Development of 
plume area-spring 

Q relationship 

Stream (baseflow) discharge (all streams) 

5. Climate monitoring 
and climate scenario 

compilation 

Depth-variable GW 
temp. for past/present 
climate conditions 

6. Modelling present 
& future GW temp. 
(focus on range of 

source depths) 

Spring discharge 

2. In situ stream 
and spring flow 

and temp. 
monitoring and 
well level and 

temp. monitoring 

Comparison of 
modelled GWtemp. 
and measured spring 

temp. ---+ spring 
source depth 



4726 J. J. KarisAllen et al.: Present and future thermal regimes of intertidal groundwater springs

where Jadv is the net (sensible) advective energy flux (W ),
Cw is the volumetric heat capacity of water (J m−3 ◦−1),
Qinput is the input (direct rainfall, spring, or stream) water
discharge (m3 s−1), T is the water temperature (◦), and Tinput
and Tlagoon are the water temperatures for the hydrologic in-
put (rainfall, spring, or stream) and lagoon, respectively. Pre-
cipitation temperature was assumed to be the same as the av-
erage air temperature from the climate station over the short,
focused study period. Advective heat fluxes for the springs
and streams were considered to investigate the springs’ ther-
mal function at the scale of the lagoon. A complete lagoon
energy balance cannot be completed due to a lack of com-
plete surface energy flux data and data for the hydraulic and
thermal exchange with the ocean. However, as a first-order
estimate of the relative thermal effects of the freshwater in-
flows at the lagoon scale, the advective fluxes obtained via
Eq. (1) were compared to the downwelling shortwave ra-
diation (W m−2) measured at the study site climate station
(Fig. 1) and multiplied across the lagoon surface area.

Conductivity–temperature–depth loggers were installed
within the lagoon and in two intertidal springs (summer 2020
only). Discrete water temperature and electrical conductivity
measurements of the lagoon, springs, streams, and piezome-
ter were also taken during field investigations using handheld
devices (Apera EC400S Portable Meter and a YSI ProDSS)
to parameterize the two-component salinity mixing model
used to correct the estimations of freshwater discharge from
gauged springs.

Dissolved radon (222Rn; t1/2 = 3.83 d) is naturally en-
riched in groundwater and is an inert noble gas, making it an
effective tracer for groundwater discharge to coastal systems
(Swarzenski, 2007). Four groundwater springs were sampled
for 222Rn in August and November 2020 (Fig. 1b) coin-
cident with continuous paired electrical conductivity, water
depth, and temperature monitoring, as previously described.
Glass bottles (250 mL) were submerged directly at the spring
outlet and allowed to overflow, collecting bubble-free with-
out headspace, and analyzed via RAD-H2O (Durridge Co.).
Stream surface waters and shallow lagoon porewaters were
additionally analyzed in November (Fig. 1b). Near the inlet
of Basin Head lagoon, surface water was continuously drawn
into a gas exchange chamber (RAD-AQUA), and 222Rn was
monitored using a commercial radon-in-air monitor (RAD7,
Durridge Co.) over 24 h in August (Fig. 1b, southernmost
blue ring). Dissolved 222Rn activities were determined using
the solubility constants from Schubert et al. (2012) for tem-
perature and salinity and corrected for instrument response
delay.

A mass balance model was developed for 222Rn (Burnett
and Dulaiova, 2003; Rodellas et al., 2021; Sadat-Noori et al.,
2015):

Jmix+ Jdecay+ Jatm = Jspring+ Jstream+ Jdiff+ JRa-226, (2)

where J represents the flux of 222Rn (Bq d−1) for all known
sources (baseflow-fed streams Jspring; molecular diffusion

Jdiff; 226Ra production JRa-226) and sinks (mixing Jmix; ra-
dioactive decay Jdecay; atmospheric evasion Jatm) of 222Rn
within the Basin Head lagoon. With the time-series monitor-
ing station near the inlet of the lagoon, we assume that this
point-in-space is representative of all 222Rn inputs and out-
puts through the tidal inlet, and thus any imbalance between
known sources and sinks is attributed to unknown groundwa-
ter inputs (Jspring). This estimate provides a maximum range
of groundwater inputs (Peterson et al., 2010) and includes
both focused (springs) and diffuse groundwater discharge, in
contrast with the thermal plume method (springs only).

3.3 Groundwater and thermal numerical modelling

Ground temperature modelling for present and future con-
ditions was used to interpret field data and to project fu-
ture groundwater warming (box 6; Fig. 2). A 1-D subsur-
face heat and water transport model was developed and man-
ually calibrated to local groundwater temperature observa-
tions, with hydrologic parameterization informed by local
data (e.g., weather data, piezometer slug test) and literature
values, and calibrated using measured groundwater temper-
ature data from the piezometer (Fig. 1) and an upland well
(see Sect. 4.3.1). Downscaled future climate projections were
then applied as upper-boundary conditions to drive simula-
tions of plausible future subsurface temperatures, with the
goal of assessing the potential sensitivity of springs to pro-
jected multidecadal warming trends (Fig. 3a). The concep-
tual complexity of the numerical model was limited both
to facilitate model parameterization as well as interpreta-
tion; nevertheless, this approach preserved key heat transport
processes. Multi-dimensional systems such as the fractured
sandstone/mudstone aquifers feeding the intertidal springs
in the Basin Head lagoon may be simplified into a one-
dimensional system operating on the concept of an “effec-
tive aquifer depth”, which lumps together multi-dimensional
processes and can be derived by relating the amplitude de-
cay or phase shift of the seasonal groundwater tempera-
ture sinusoid relative to the air temperature signal (Kury-
lyk et al., 2015b). One-dimensional heat transfer modelling
approaches have been used in previous studies considering
groundwater thermal impacts on rivers (e.g., Briggs et al.,
2018a, b) and in analytical solution studies of past or fu-
ture groundwater warming (e.g., Gunawardhana et al., 2011;
Irvine et al., 2017). The thermal regimes of shallow aquifers
exhibit a depth-dependent response to seasonal surface tem-
perature signals, and thus the measured seasonal amplitude
of groundwater discharge temperature yields an approximate
average groundwater depth (Kurylyk et al., 2015b) that can
be used to estimate the thermal response of that spring to
multi-decadal warming.

The selected model, Simultaneous Heat and Water model
(SHAW; Flerchinger and Saxton, 1989), simulates transient
vertical energy and water transport through a canopy, a snow
layer, plant residue, and soil layers (Flerchinger, 2017). The
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Figure 3. (a) Flowchart showing the conceptualization of the mod-
elling approach used in this study and (b) conceptual diagram of
SHAW model set-up and boundary conditions (not drawn to scale).

robust physical basis and ability of SHAW to simulate the
surface energy balance, snowpack, vegetation, and season-
ally frozen soil processes (e.g., Mohammed et al., 2017)
made it an appealing choice for this long-term thermal study,
as these processes affect subsurface thermal trends at the lat-
itude of the study site. A description of model processes and
equations, as well as the boundary condition options, is de-
tailed in Flerchinger (2017) and summarized here. The sur-
face temperature (land, vegetation, or snow) is obtained by
balancing the surface heat fluxes (net all-wave radiation, tur-
bulent fluxes of sensible and latent heat, ground heat flux).
Vertical heat transfer through the snowpack, vegetation, or-
ganic material, soil, and deeper subsurface layers is simu-
lated with partial differential equations for energy transport.
For the soil (ground) layers, the one-dimensional, transient
conduction–advection equation in SHAW is

Ca
∂T

∂t
−Liρi

∂θi

∂t
=
∂

∂z

[
λe
∂T

∂z

]
− ρwcw

∂qwT

∂z

−Lv

(
∂qv

∂z
+
∂ρv

∂t

)
, (3)

where Ca is the bulk volumetric heat capacity of the soil
(J m−3 ◦C−1), T is soil temperature (◦C), Li is the latent heat
of fusion (J kg−1), ρi is the ice density (kg m−3), θi is the soil
ice content (m3 m−3), λe is the bulk soil thermal conductiv-
ity (W m−1 ◦C−1), ρw is the water density (kg m−3), cw is
the water specific heat capacity (J kg−1 ◦C−1), Lv is the la-
tent heat of vaporization (J kg−1), qw is the soil water flux
(m s−1), ρv is the vapour density in the soil (kg m−3), and qv
(kg m−2 s−1) is the soil vapour flux. Water balance and ver-
tical fluxes are computed in a similar manner using a partial
differential equation based on mass balance rather than en-
ergy balance (Flerchinger, 2017). SHAW has been success-
fully and widely applied in a range of environmental condi-
tions to simulate subsurface temperatures.

Bulk thermal properties of the subsurface in SHAW are es-
timated based on the approach of DeVries (1963) using user-
input soil compositions and model-computed water content;

soil compositions were herein based on local soil surveys
and historical studies of PEI soils (e.g., Crowl, 1969a). This
study separated the model domain into an unsaturated upper
region (0 to 3 m depth) that computed the upper-boundary
condition and forcing to the lower, saturated region model
(3 to 93 m depth; Fig. 3b). The bottom boundary position
was selected (after various iterations) to ensure that the lower
boundary did not influence the thermal sensitivity of the shal-
low groundwater temperatures, which were the focus of the
present study. SHAW version 3.0.3 was used for the upper
domain to calculate surface and vadose zone fluxes, whereas
a modified version of SHAW 2.4 was used for the lower re-
gion to exclusively consider subsurface thermal transport be-
low the water table without solving the surface energy bal-
ance (Mohammed et al., 2017).

Climate inputs required by SHAW to solve the surface
energy balance for the upper region model include maxi-
mum and minimum daily air temperatures, dewpoint tem-
perature, wind speed, total precipitation, and all-sky radia-
tion. The time step, input data, and output of the simula-
tions had a daily resolution as in other groundwater tem-
perature studies using SHAW (e.g., Langford et al., 2020).
Ground(water) temperatures in saturated conditions are rel-
atively easy to simulate compared to soil moisture, which
enables the coarser time step compared to models focusing
on reproducing soil moisture variations. Based on the pe-
riod of this study and the availability of historic data and
climate projections, historical simulations were conducted
over 37 years (1984–2020), and future simulations were run
over 81 years (2020–2100). The minimum and maximum air
temperatures, as well as total precipitation for the historical
simulations, were sourced from the CNRM-CM5, RCP4.5
hindcast model (Voldoire et al., 2013), which more accu-
rately reproduced historical conditions for PEI relative to
other climate simulations (Warner, 2016). There is no di-
rect long-term climate record for the study site (Basin Head),
and, given our focus on multi-year averages in groundwa-
ter temperature, we are not concerned with high-frequency
differences between hindcast data and actual environmental
conditions. Thus, we used the hindcast data for our histor-
ical period (1984–2000). Data for the hindcast and projec-
tions were statistically downscaled to a ∼ 10 km grid size
(ECCC et al., 2021c). Local dewpoint temperature, wind
speed at 2 m above ground level, and all-sky solar radia-
tion data were sourced from the NASA POWER reanalysis
database (Sparks, 2018). As there were no readily accessi-
ble future projections for dewpoint temperature, wind speed,
and all-sky solar radiation, these were estimated by repeating
data from a portion of the historical period (i.e., 1985–2020;
Sparks, 2018). The repetition of these data is not expected
to produce significant errors given the relative hydraulic and
thermal inertia of groundwater systems and because ground-
water temperature changes are later interpreted herein using
5-year averages to smooth out any short-term effects. Future
daily maximum air temperature, minimum air temperature,
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and total precipitation to drive future model projections were
sourced from four climate simulations based on work by
Warner (2016): (1) CNRM-CM5, RCP4.5; (2) CNRM-CM5,
RCP8.5; (3) MRI-CGCM3, RCP4.5; and (4) MRI-CGCM3,
RCP8.5 (ECCC et al., 2021c).

4 Results

4.1 Remote thermal sensing and spring discharge
analysis

Based on cold-water plumes visible in the drone-based aerial
thermal imagery (e.g., Fig. 4), 40 springs were located
on the north and west shores of the lagoon (mapped in
Fig. 1b and Figs. S2–S6 of the Supplement). Spring dis-
charges were < 2 % saltwater, determined from electrical
conductivity, so the resultant freshwater correction had a
minimal effect on discharge estimates (Sect. 3.1, 3.2). The
paired discharge values and thermal plume areas for the
three gauged springs yielded a power function thermal plume
area–discharge relationship for the lagoon at this point in
time (R2

= 0.99; Fig. 5d).
The areas of only 34 springs were graphically assessed us-

ing low-tide thermal image pixel data (Table S2) because the
remaining identified springs were either too small or inac-
cessible for close imaging via the drone. The workflow and
results for the plume area associated with Spring 8 are shown
as an illustrative example in Fig. 5. Instantaneous spring dis-
charges for ungauged springs (Springs 1–31; Table S2) were
computed as a function of plume area using the lagoon power
function (Fig. 5d). The estimation of continuous spring dis-
charge over the focused study period from the instantaneous
spring discharges via the proxy data (i.e., piezometer wa-
ter level, Sect. 3.2) yielded a total spring discharge volume
estimate for this 35 d period of 113 000 m3 (0.037 m3 s−1).
Springs were found at a density of approximately six springs
per kilometre along the surveyed section, which yielded
approximately 580 m3 km−1 d−1 (0.0067 m3 s−1 km−1) for
the discharge rate per shoreline length. Assuming a simi-
lar spring flow per length for the 20 % unsurveyed shore-
line resulted in a cumulative 35 d total spring discharge of
142 000 m3 (0.047 m3 s−1).

4.2 Hydroclimatic monitoring data and analyses

4.2.1 Stream discharge monitoring results

Stream monitoring data (Fig. S8) were analyzed to estimate
the total indirect groundwater flow (baseflow) to the lagoon
during the focused study period, which yielded the follow-
ing inflow volumes (flows): S1= 90 000 m3 (0.030 m3 s−1),
S2= 22 000 (0.0073), S3= 33 000 (0.011), and S4= 7700
(0.0025). Based on the assumption that all streamflow is
baseflow during the summer months as supported by the
lack of flow “spikes” (Fig. S8) and typical summer condi-

tions in PEI, streams contributed approximately 153 000 m3

(0.050 m3 s−1) of indirect groundwater to the lagoon over the
focused study period. This total streamflow is within 6 % of
the total spring inflow estimated from the thermal analysis,
suggesting the two hydrologic pathways for groundwater de-
livery (baseflow and spring discharge) are comparable at this
site in the summer.

4.2.2 In situ temperature data

Water temperatures in the lagoon were relatively high dur-
ing the focused study period (maximum 15 min temperature
of 33 ◦C), with mean daily water temperatures often greater
than the mean daily air temperatures and occasionally ex-
ceeding 25 ◦C in the northeast arm of the lagoon (Fig. 6). In
contrast, the groundwater-dominated streams had mean daily
water temperatures between 10 and 14 ◦C during this period,
and groundwater discharge temperatures remained between
7 and 10 ◦C for all continuously monitored springs (Figs. 6,
7). Seasonal lagoon water temperatures peaked in late July
to early August. Lagoon and stream temperatures exhibited
at least limited diel variability (hourly data; Fig. S9), whereas
none of the monitored springs displayed diel temperature
fluctuations once tidal effects were removed. Over the fo-
cused period, the median 15 min water temperatures and in-
terquartile ranges (IQRs) of Streams S1, S2, S3 and S4 were
8.7◦ (IQR= 0.6◦), 10.8◦ (IQR= 1.2◦), 10.5◦ (IQR= 1.3◦),
and 10.4◦ (IQR= 1.0◦), respectively. Stream temperature
measurements were taken near the stream mouths (above
normal head of tide; Fig. 1) and represent the outcome of
the cumulative upstream heat exchange, including the sur-
face heat fluxes absorbed along the channel. This caused
stream temperatures to exceed spring temperatures in the
summer months (Figs. 6 and S9). Five temperature sensors
distributed throughout the lagoon (Fig. 1b) over the focused
period yielded a higher temperature median (∼ 22 ◦C) and
variability (IQR= 4◦). Temperatures were typically greatest
in the shallower, more poorly flushed upper reaches of the
northeast arm of the lagoon and lowest in the deeper main
basin (Figs. 1b, 6).

Summertime lagoon water temperatures over the study pe-
riod were consistently lowered surrounding spring outlets;
however, the extent of these thermal anomalies varied sub-
stantially with tidal stage and channel geometry (KarisAllen
and Kurylyk, 2021). The difference between coincident
spring and lagoon temperatures was up to 23◦ (Fig. S9b).
The thermal patterns of three springs (Fig. 7) were analyzed
to estimate their seasonal signal properties (especially ampli-
tude) and by extension their relative depth and vulnerability
to climate warming by comparison to the modelled results.
Temperatures at each of the spring outlets (Fig. 7) exhibited
pronounced semi-diurnal oscillations (i.e., 12.42 h periods)
due to the altered aquifer–lagoon hydraulic gradients and en-
hanced lagoon mixing at higher tide. To isolate the ground-
water temperature from the time series at the spring outlets,
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Figure 4. (a, b) Visual drone images of two of the springs that were manually gauged (Springs B and C; see Table S2). (c, d) Corresponding
thermal images from the drone’s thermal sensor. Scales are not equal among panels: there was a maximum thermal offset of 16 and 12◦

between the spring water and receiving environment for (c) and (d), respectively. Pixel resolutions were 6.0 and 5.2 cm per pixel for panels (c)
and (d), respectively.

the temperatures at low tide over several months of tidal cy-
cles were fitted with an annual (period of 1 year) thermal
sinusoid (dashed red lines; Fig. 7). The average temperature
of Spring 5 was 7.65◦ (Fig. 7a). The lack of thermal peri-
odicity in this spring suggests that its source depth is below
the extinction depth of annual air temperature patterns (nor-
mally 10–20 m in this region; e.g., Kurylyk et al., 2015b). In
contrast, Spring 21 (Fig. 7b) displayed an annual signal with
a mean of 7.75◦ and an amplitude (half the range) of 1.6◦.
Spring 2 displayed a seasonal signal (Fig. 7c) with the low-
est mean temperature (7.05◦) and highest amplitude (2.0◦).
This amplitude suggests that Spring 2 has the lowest source
depth and is the most vulnerable to multidecadal warming
of the three springs investigated, as discussed later. The fit-
ted spring temperature amplitudes were compared to depth-
variable seasonal results from numerical modelling to infer
approximate average depths of the groundwater delivered to
the springs (Sect. 4.3.2).

4.2.3 Lagoon heat fluxes

Selected advective components of the Basin Head lagoon
heat budget associated with freshwater inflows were esti-
mated for the 35 d focused study period (Table 1). Contin-
uous spring discharge for the net advection calculation was
estimated from the water table proxy approach (Sect. 3.2).

The freshwater inflows from the precipitation, streams, and
springs cooled the lagoon over the summer, as indicated by
their negative net thermal advection values (Eq. 1) in Ta-
ble 1. The estimated total net advective heat flows for the
streams and springs were almost identical and over an order
of magnitude higher than the advection from direct precipita-
tion. Any unquantified diffuse groundwater input (upwelling
to lagoon) would further increase the relative contribution of
direct groundwater on the lagoon heat budget. As expected,
heat flow from downwelling solar radiation was substantially
higher than advective heat components to the lagoon (Ta-
ble 1), suggesting that the springs and streams likely exert
minor influence on the average water temperatures through-
out the lagoon, despite their evident thermal impact at a lo-
calized scale along the shoreline (Figs. 4 and S8). A heat
budget, including advective exchanges with the ocean and a
complete surface energy balance, is required to gain a full
understanding of the relative thermal effects of these fresh-
water inflows at the scale of the full lagoon, but data are not
available for many heat flux components.

4.2.4 Radon results

Near the lagoon inlet, surface water 222Rn activity varied
from 10 to 97 Bq m−3, with maximum activities occurring
near low tide when salinities were lowest and following
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Figure 5. Simplified workflow and results describing the area and discharge analyses of Spring 8 (included in Table S2 and Fig. S6) using the
Basin Head plume size–spring discharge relationship. (a) Raw thermal image of Spring 8 cropped (rectangular) to the spring area (maximum
offset of 14◦ between the spring water and discharge environment; pixel resolution of 6 cm per pixel). (b) Thermal image converted to 8-bit
grayscale and cropped (polygonal) to thermal groups of interest. (c) Graph of thermal image pixel data in terms of cumulative area and binned
grayscale values. The graphical analysis method of Roseen (2002) guided by manual inspection of image pixel values was used to define the
plume area (∼ 115 m2). (d) The plume size–spring discharge relationship from the three gauged springs of the lagoon is used to define spring
instantaneous discharge based on plume area defined in (c). Panels (a), (b), (c), and (d) in this figure correspond with box numbers 1, 1b, 1c,
and 3, respectively, for Fig. S1 in the Supplement.

Table 1. Basin Head lagoon heat fluxes associated with three advective processes and downwelling shortwave radiation applied across the
lagoon surface area. All heat budget components are over the 35 d focused study period. Positive values indicate an addition of sensible
energy to the lagoon, while negative values indicate a cooling effect. Lagoon water temperature was approximated as its median value (22◦)
to calculate the advective terms (Eq. 1). n/a: not applicable.

Heat budget component 35 d net heat contribution 35 d net water Approx. mean water
volume (m3) temperature (◦)

Springs −7.60× 1012 J (−2.51× 106 W) 142 000 8
Streams −7.67× 1012 J (−2.53× 106 W) 153 000 10
Rainfall −2.76× 1011 J (−8.83× 104 W) 22 000 19
Downward shortwave radiation 3.89× 1014 J (1.29× 108 W) n/a n/a

classic hysteresis loops (Figs. 8a, b). The 222Rn activities
of the fractured sandstone springs (10400± 3700 Bq m−3;
n= 4) were an order of magnitude higher than for the
shallow, brackish porewaters (630±250 Bq m−3; n= 4) and
baseflow-fed streams (1100±1200 Bq m−3; n= 4), as shown
in Fig. 8a and Table S3. Stream discharge during the
surveyed period, 0.05 m3 s−1, results in a stream-derived
radon flux of (4.7± 5.6) × 106 Bq d−1. This flux repre-
sents a theoretical maximum, as there will be apprecia-
ble 222Rn degassing and decay within the stream prior
to entering the lagoon. Based on the minimum observed
222Rn concentration (Gilfedder et al., 2015), the diffusive

flux of 222Rn may be approximated as 11± 6 Bq m−2 d−1;
or (6.4± 3.2)× 106 Bq d−1, over the total lagoon area.
Losses of 222Rn due to tidal mixing (Burnett and Du-
laiova, 2003) and atmospheric evasion (MacIntyre et al.,
1995) are taken as the mean (± standard deviation) losses
estimated over the 24 h tidal cycle, upscaled to the la-
goon surface area (Table S4). Similarly, radioactive de-
cay is estimated considering the mean excess 222Rn inven-
tory, for a net loss of (1.9± 1.6)× 106 Bq d−1. Consider-
ing known sources and sinks, there is an excess of 222Rn
(8.0± 6.0× 107 Bq d−1) attributable to groundwater. Using
a 222Rn endmember from the fractured-sandstone springs
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Figure 6. Illustrative examples (subset of monitored locations) of
mean daily water temperatures vs. date (yyyy-mm-dd) for two lo-
cations in the Basin Head lagoon (i.e., entrance and northeast arm),
Stream S1, and Spring 2 (with tidal effects corrected by considering
the temperature only at low tide; see Fig. 7), as well as mean daily
air temperature over the final 4 months of the study period. The la-
goon northeast arm water temperature series was calculated from
the average of two paired sensors (one at the lagoon water surface
and the other at the channel bottom; see Fig. 1). The raw, uncor-
rected data and inferred annual groundwater temperature signal for
Spring 2 are featured in Fig. 7c. Hourly data are in Fig. S9.

Figure 7. Temperature data (black) from the mouths of (a) Spring
5, (b) Spring 21, and (c) Spring 2 (see Table S2 and Fig. S7 for lo-
cations) vs. date (yyyy-mm-dd) from Basin Head lagoon. The fitted
annual temperature sine wave (GWT; in red) has a distinguishable
amplitude in Springs 21 and 2 but not in Spring 5. GWT is the an-
nual groundwater temperature waveform, and t is the time in days.

Figure 8. 222Rn variability versus salinity (a, b) and tidal water
level (c), including hysteresis loops over two August 2020 tidal cy-
cles; panel (b) depicts the lagoon data points outlined in (a) at a
greater resolution. 222Rn values are listed in Table S3.

(10400± 3700 Bq m−3), we estimate maximum groundwa-
ter inputs of 0.09±0.07 m3 s−1. Given our uncertainties, the
absolute value of this flux should be interpreted with caution,
but it is useful for placing results from other methods into a
broader context.

4.3 Groundwater and thermal numerical modelling
results

4.3.1 Model calibration and sensitivity

Model elements (e.g., residue layer, organic content, water
table depth, and snow/rain threshold) were manually cali-
brated within appropriate ranges to improve agreement of
the historical simulation with the approximate calibration tar-
gets. The SHAW model was manually calibrated to the mean,
amplitude, and lag of the seasonal groundwater temperature
signal recorded in the transducer in the coastal piezometer
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Figure 9. Historical simulation data for the years of 2016–2020 ex-
tracted from SHAW. (a) Maximum and minimum daily air temper-
ature and total rainfall input to the model. (b) Subsurface tempera-
tures at various depths in response to surface forcing. The temper-
ature data at depths of 1 and 3 m were extracted from the surface
domain, whereas the others are from the lower domain. Modelled
amplitudes may be compared to measured spring signals to estimate
their source depths.

(4.24 m below surface), and modelled and measured results
were in agreement post calibration (Table S5). Furthermore,
after accounting for the difference in water table depth, out-
puts from the calibrated model at 13.9 m depth were in agree-
ment with temperature measurements at the same depth in a
nearby upland provincial observation well (Souris Line Road
observation well at 55 m a.s.l.; Government of PEI, 2021 and
Table S1 footnote). Relative uncertainty results for the mod-
elling are presented in Table S6.

4.3.2 Historic and future simulation results

The atmospheric forcing (Fig. 9a) and the SHAW-modelled
subsurface temperature response (Fig. 9b) over the last 5
years (2016–2020) of the historical simulation are presented
for different depths to illustrate the intra-annual variability
of temperature and the attenuation and lagging of the surface
temperature signal with depth. The modelled amplitudes of
the annual temperature signals (Fig. 9) were compared to the
measured spring outlet thermal patterns (red lines; Fig. 7)
to estimate the springs’ effective source depths. Based on
their amplitudes, Springs 2 and 21 are likely predominantly
sourced from effective depths between 3 and 7 m. Spring 5
is interpreted to be mostly fed from depths below 12 m, al-
though we recognize that springs are sourced from the con-
volution of flows from different depths.

The final 5 years of the future simulations (2096–2100)
were compiled and compared to the final 5 years of the
historical simulation (2016–2020, Table 2) to assess future
groundwater warming. The subsurface temperatures at 4.2
and 13.9 m (sensor depths in piezometer and government
well) increased with increasing atmospheric and surface tem-
peratures in all simulations (Fig. 9). For example, focusing
on the model calibration/assessment depths for the piezome-
ter and monitoring well reveals that modelled groundwater
temperature is projected to increase by 0.08 to 2.23◦ at 4.2 m
depth and by 0.45 to 1.62◦ at 13.9 m (Table 2), indicating
the depth dependency of warming for a given timeframe and
the influence of a given climate scenario. The MRI-CGCM3,
RCP8.5 simulation had the greatest temperature increase,
whereas the MRI-CGCM3, RCP4.5 simulation had the low-
est (Table 2).

The SHAW modelling indicates that the springs with
more seasonally stable temperatures are sourced from greater
depths (Fig. 9b) and will thus experience delayed warm-
ing due to climate change (e.g., Fig. 10a vs. b). For exam-
ple, 5-year-averaged air temperature was simulated to in-
crease by approximately 4.32◦ over the course of the warmest
future simulation (i.e., MRI-CGCM3, RCP8.5), which in-
creased the 5-year-averaged groundwater temperature by ap-
proximately 1.78◦ at 4.2 m depth and 1.57◦ at 13.9 m depth.
For comparison, this suggests a relative (to air) groundwater
warming rate (or “thermal sensitivity”) of 0.41◦ per degree
of atmospheric warming at 4.2 m depth and 0.36◦ per degree
at 13.9 m depth by the year 2100, although the differences
can be higher between these locations for a given year (see
range in Table 2). The model results also illustrate that shal-
lower aquifer zones are more vulnerable to short-term (sea-
sonal and inter-annual) variations in temperature given how
the seasonal amplitude and year-to-year variation are reduced
with depth (Fig. 9b). Thus, short-term and long-term dynam-
ics are more pronounced in shallower springs, causing them
to reach higher peak temperatures in a given year.

5 Discussion

5.1 Thermal plume analysis and continuous discharge
estimation

This study applied a power curve regression to the collected
spring discharge and area data, which varies from previous
studies that have applied linear (e.g., Bejannin et al., 2017;
Lee et al., 2016b; Tamborski et al., 2015) or logarithmic re-
lationships (Danielescu et al., 2009). Our high coefficient of
determination (R2

= 0.99; Fig. 5d) suggests a strong rela-
tionship between plume size and discharge, although we con-
cede this is based on a limited number of points for reasons
discussed. Previous studies have converted instantaneous dis-
charge measurements based on thermal plume analysis to
continuous discharge estimates using baseflow as a proxy
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Table 2. Simulated groundwater temperatures for the future SHAW simulations at the two studied depths (4.2 m is the piezometer sen-
sor depth, while 13.9 m is the depth from provincial monitoring well sensor; see text). GCM is the global circulation model; RCP is the
Representative Concentration Pathway. n/a: not applicable.

GCM RCP Depth Average annual Projected change
(m) temperatures (◦) (range) (◦)∗

CNRM-CR5 Historic 4.2 7.45–7.80 n/a
CNRM-CR5 4.5 4.2 7.88–8.45 0.08–1.00
CNRM-CR5 8.5 4.2 8.59–9.62 0.79–2.17
MRI-CGCM3 4.5 4.2 7.90–8.61 0.10–1.16
MRI-CGCM3 8.5 4.2 9.13–9.68 1.33–2.23
CNRM-CR5 Historic 13.9 7.61–7.63 n/a
CNRM-CR5 4.5 13.9 8.26–8.41 0.63–0.80
CNRM-CR5 8.5 13.9 8.79–9.03 1.16–1.42
MRI-CGCM3 4.5 13.9 8.08–8.25 0.45–0.64
MRI-CGCM3 8.5 13.9 9.14–9.23 1.51–1.62

∗ The projected temperature change was calculated by comparing the last 5 years of the future
simulation to the last 5 years of the historic simulation.

Figure 10. Modelled 365 d averaged subsurface temperatures
(lines) and their associated intra-annual range (area) at two depths:
(a) 4.2 m and (b) 13.9 m (representing the groundwater temperature
sensor depths in our piezometer and the provincial monitoring well,
respectively). The historical period (1984–2020) uses the CNRM-
CR5 simulation data, and four future simulations were run for the
period of 2020–2100. The beginning of the historical simulation in-
volves a period of model domain stabilization.

for spring discharge (Bartlett, 2011; Danielescu et al., 2009).
Rather than baseflow, we used groundwater levels measured
in a piezometer close to the lagoon as this was thought to be a
better proxy for the local hydraulic gradient (and thus spring
flow) than baseflow, which integrates processes further up-
catchment.

To overcome limitations with the limited number of
points informing the thermal plume area–discharge relation-
ship and the associated total spring discharge estimate of
0.047 m3 s−1, we independently assessed total groundwater
inputs using a 222Rn mass balance. Assuming that ground-
water discharge to the lagoon accounted for the differences
between known 222Rn sources and sinks, maximum input of
groundwater was estimated as 0.09±0.07 m3 s−1 (Table S4).
Given the uncertainty of both approaches, these independent
assessments are quite comparable. Also, the 222Rn approach
may capture additional diffuse groundwater inflows not cap-
tured by the drone survey, and thus it is expected the dis-
charge from the radon approach would be higher. For exam-
ple, Danielescu et al. (2009) found that approximately 25 %
of groundwater inflow to two PEI coastal systems was dif-
fusive, and such inflows were not accounted for in the drone
thermal imagery analysis in this study. The results reveal the
value in using complementary but independent estimates of
groundwater inflows from different types of tracers (heat and
radon), particularly if both estimates are highly uncertain.

The comparison of estimated streams and spring flows
from this study reveals that the magnitude of direct ground-
water inputs to PEI coastal systems is likely significant rel-
ative to stream inputs in the summer. As in other studies
(Danielescu et al., 2009), we assumed that intertidal spring
discharge measurements taken at low tide were representa-
tive of the discharge over the tidal cycle. However, discharge
would theoretically decrease at a higher stage due to the re-
duced aquifer–lagoon hydraulic gradient (Lee et al., 2016b;
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LeRoux et al., 2021), and spring-sourced thermal plumes at
this site can be obscured at high tide (KarisAllen and Kury-
lyk, 2021). This is supported by time-series observations of
222Rn, where maximum activities are observed during ebb
and low tides (Fig. 8c). However, relatively low electrical
conductivity and temperature around certain springs during
high tides suggests that at least some springs discharge con-
tinuously.

5.2 Water temperature and heat transfer

The thermal imagery and in situ temperature time series re-
veal the contrast between summer 2020 lagoon temperatures
(mean ∼ 22◦, maximum 33 ◦C) and the stream (8–13 ◦C)
and spring temperatures (7–10◦). The relative hydrologic and
thermal stability of the streams attest to their groundwater
dominance (Kelleher et al., 2012; Mayer, 2012; Johnson et
al., 2020). The in situ data and thermal imagery also col-
lectively illustrate that thermally stable groundwater inflows
can reduce the temporal variability in surface water tem-
perature (streams vs. lagoon temperatures; Fig. 6) and yet
simultaneously enhance the spatial variability of tempera-
ture (lagoon cold-water patches). The influence of ground-
water on the lagoon temperature relative to other thermal
controls (e.g., tidal exchange and solar radiation) is dynamic
in space and time. Groundwater inputs may be most signifi-
cant as a thermal buffer throughout the hottest periods of the
summer months when rainfall is scarce and lagoon tempera-
tures and stream baseflow indices peak. A full lagoon energy
budget (e.g., Rodríguez-Rodríguez and Moreno-Ostos, 2006)
would improve our understanding of lagoon-scale thermal
dynamics and thus the significance of groundwater and its
sensitivity to climate warming. However, at a local scale,
cold-water plumes created by intertidal springs can create
distinct thermal zonation (e.g., Figs. 4, S8) that potentially
provide thermal relief to aquatic organisms capable of be-
havioural thermoregulation or to static organisms collocated
with the discharge point. While such groundwater-sourced,
thermally habitable niches have received considerable atten-
tion in freshwater environments (e.g., Torgersen et al., 2012;
Sullivan et al., 2021), they are less studied in transitional,
coastal waters (Grzelak et al., 2018; Lecher and Mackey,
2018). The identified cold-water plumes are concentrated
along the shoreline (Fig. 1), indicating that the nearshore
zone and associated microecosystems may be more strongly
influenced by focused groundwater inflows than the mid-
lagoon waters.

5.3 Modelling implications

Intertidal springs in the lagoon are sourced from different
effective depths in the groundwater system(s). Individual
springs experience varied thermal forcing based on their as-
sociated soil layers, land use, land cover, and travel paths that
dictate their thermal signature and sensitivity to surface tem-

peratures. In this study, a one-dimensional subsurface model
was used to demonstrate that springs within the lagoon are
expected to warm in response to future atmospheric warm-
ing within decades. The reduced groundwater warming com-
pared to atmospheric warming (Sect. 4.3.2 and Fig. 10) does
not imply that aquifers ultimately attenuate multi-decadal
surface warming signals but rather that there is a lag between
a surface warming signal and its subsurface manifestation
(Menberg et al., 2014; Bense and Kurylyk, 2017). For ex-
ample, if the climate warmed to 2100 and then stabilized, the
shallow aquifers over a range of depths would eventually be
in equilibrium with the new thermal conditions, and the as-
sociated damping of groundwater warming relative to atmo-
spheric warming would become progressively less apparent.
It is also important to note that the lag in groundwater warm-
ing in response to climate change is not the same as the lag
in response to seasonal forcing (Sect. 4.3.1) because the lag
depends on the period of the forcing signal (e.g., Stallman,
1965). Modelling results suggest that the mean annual tem-
perature of shallower groundwater supplying some springs
may warm more than 2◦ before the year 2100 (Table 2). The
overall distribution of spring source depths would need to be
further explored to assess how sensitive groundwater inputs
to Basin Head lagoon may be at the lagoon scale, but these
modelling results are valuable to understand the present/fu-
ture system and to inform future research and management
initiatives in this Marine Protected Area (Joseph et al., 2021).

Our modelling had several limitations. For example,
we represented multi-dimensional processes in a one-
dimensional system (Fig. 3) and did not have multi-depth
groundwater data available at a single well for model assess-
ment. Model uncertainty arose from uncertainty associated
with the conceptual model, the thermal and hydraulic pa-
rameters, and the forcing data; however, ground temperature
modelling is far more robust than soil moisture or groundwa-
ter hydraulics modelling because thermal signals are mod-
ulated with depth, and thermal properties are well con-
strained in comparison to hydraulic ones (Anderson, 2005).
In general, considering the data availability and modelling
objectives, the resulting calibration and model application
were considered satisfactory for the investigations described
above. However, future work could consider warming in a
multi-dimensional aquifer system with responsive water ta-
ble dynamics or more fully integrate the lagoon within the
model domain in a coupled groundwater–surface water ther-
mal modelling framework (e.g., Brookfield et al., 2009).
Numerical groundwater models that account for secondary
porosity could be used to consider heat transfer within the
fracture network and the porous sandstone matrix (Graf and
Therrien, 2007).

5.4 Ecological implications of spring warming

Springs are known to support critical groundwater-dependent
ecosystems (Cantonati et al., 2020) due to the distinctive
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conditions (e.g., nutrient levels, dissolved oxygen, salinity,
and temperature) at their outlets; this study focused on their
thermal function. The significance of ambient or local la-
goon temperature changes may be contextualized by species-
specific temperature thresholds related to metabolic activ-
ity and survival. Optimal temperature for giant Irish moss
is likely between 8 and 20◦ (Bird et al., 1979; Mathieson
and Burns, 1971; Tasende and Fraga, 1992), and tempera-
tures above 30◦ are highly detrimental (Kübler and Davi-
son, 1993; Lüning et al., 1986). Furthermore, blue mussels
(Mytilus edulis) provide essential anchorage to giant Irish
moss (DFO, 2009; Joseph et al., 2021), and water temper-
atures above 25◦ may encumber their growth and resilience
to predation (Dowd and Somero, 2013). Increasing lagoon
temperatures may also be anticipated to alter primary pro-
duction and macroalgae bloom dynamics (Wells et al., 2020),
as well as species distributions and interactions (Anderson,
2013). Consequently, warming of aquifers, and thus springs
and groundwater-dependent streams, could negatively im-
pact thermally vulnerable species, as mixing of groundwa-
ter into the lagoon results in lower summertime water tem-
peratures at least locally and at low tide (Figs. 4 and S9).
Also, fish have been observed aggregating in these cold-
water plumes during warm days, perhaps suggesting that
they are being used as refuges by thermally stressed aquatic
species. Even with the groundwater warming presented in
Table 2 and Fig. 10, discrete cold-water plumes will still be
evident at the mouths of these springs in a warmer climate.
However, in general, for a given spring and point in time,
the plume volume under key temperature thresholds will be
reduced by the multi-decadal warming in the aquifer and,
presumably, the lagoon. In summary, because the drone im-
agery indicates that the thermal influence of certain springs
and streams extends well beyond their outlets, groundwa-
ter warming and resultant plume warming could influence
ecosystem complexity and dynamics within the broader la-
goon in the coming decades.

6 Summary and conclusions

Groundwater-dependent coastal ecosystems are largely un-
explored in the literature. This study used hydrologic and
thermal monitoring, groundwater tracers (temperature and
radon), and numerical modelling to explore groundwater dis-
charge and its present and future roles in maintaining surviv-
able temperatures for the threatened ecosystem in the Basin
Head Marine Protected Area in southeastern Canada. The
cold-water plume areas as revealed in drone-based thermal
imagery were used to extrapolate the flow from three gauged
springs to 31 ungauged springs. The cumulative spring in-
flow (0.047 m3 s−1) estimated from this empirical approach
was comparable to the total groundwater inflow (focused and
diffuse, 0.09 m3 s−1) yielded from a 222Rn mass balance. The
results also revealed that the total spring flow was compara-

ble to the total streamflow (0.050 m3 s−1), suggesting that, at
least at a local level, springs can provide an important path-
way for delivering freshwater and energy to coastal zones.
Based on a comparison to downwelling solar radiation, ad-
vection due to spring discharge exerted little influence on
the lagoon-scale heat budget; however, thermal imagery indi-
cates that the shoreline thermal regime is strongly influenced
by groundwater discharge. The resultant thermal heterogene-
ity can provide thermal refuges to support a range of temper-
ature tolerances in a complex ecosystem.

A subsurface heat transfer model parameterized and cali-
brated with field data was employed to investigate groundwa-
ter thermal sensitivity to seasonal cycles and multi-decadal
climate change. The seasonal temperature amplitudes simu-
lated at different depths for the historical period were com-
pared to measured seasonal amplitudes from in situ spring
monitoring, and this comparison indicated that the lagoon
intertidal springs are sourced from a range of aquifer depths
(from 4 m to more than 12 m). The response to seasonal forc-
ing provided qualitative insight into how different springs
within the same small lagoon may respond to multi-decadal
forcing. Downscaled climate scenarios were used to drive
future simulations to 2100, and the results revealed depth-
dependent groundwater warming, with warming more pro-
nounced at shallower depths (e.g., ≤ 2.23 ◦C at 4.2 m) and
less pronounced at greater depths (≤ 1.62 ◦C warming at
13.9 m). The reduced warming with depth is a result of
the depth-dependent lag between surface and groundwater
warming signals. To our knowledge, no previous studies have
investigated groundwater thermal sensitivity as a driver of
future change in coastal lagoon ecosystems. Our results in-
dicate that submarine or intertidal groundwater discharge
sourced from shallow aquifers will likely experience non-
negligible warming in this century and may strongly influ-
ence the shoreline ecosystem where springs are located. The
interaction of spring discharge warming with lagoon changes
due to sea-level rise and changing atmospheric forcing war-
rant further consideration and should be considered in fu-
ture research using coupled thermal and hydrodynamic mod-
elling. Future work could more fully integrate paired hydro-
logic and ecologic studies to better understand how resident
species utilize spring-sourced thermal refuges.

Code availability. The SHAW model and associated manuals
can be downloaded from the U.S. Department of Agriculture
website at https://www.ars.usda.gov/pacific-west-area/boise-id/
northwest-watershed-research-center/docs/shaw-model/ (U.S.
Dept of Agriculture, 2019). Model input files and executables
specifically used for this study are archived through a Borealis
database https://borealisdata.ca/dataverse/hess (KarisAllen et al.,
2022a). A readme file explains how to run the model for the
different climate scenarios.
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Data availability. Field data presented in this study are available
via a Borealis database at https://doi.org/10.5683/SP3/3IGN9W
(KarisAllen et al., 2022b). A readme file explains the files and how
they are connected.

Other supporting tables and figures are provided in the Supple-
ment to this paper.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-26-4721-2022-supplement.
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